Quantitative Techniques for Assessment of Upper Extremity Movement and Function

Aviva Wolff, EdD, OT, CHT,
Clinician Investigator, Leon Root, MD Motion Analysis Laboratory, Hospital for Special Surgery, NY
wolffa@hss.edu

Susan V Duff, EdD, PT, OT/L, CHT
Associate Professor, Chapman University, Irvine, CA
duff@chapman.edu

I. Purpose

A. Surveillance / Monitor
B. Objective assessment of UE activity & performance
 a. Baseline
 b. Progress
 c. Response to interventions
C. Augmenting performance during intervention

II. Opportunities

A. Previously
 1. Videotape; parent diaries (Adolph et al., 1998)
 3. Direct supervision in rehab
B. Now
 1. Trackers / Inertial sensors / Markerless systems (i.e., Kinect)
 2. Wireless SEMG systems (Trigno™, Delsys, Inc)
 3. Indirect tele-rehabilitation
 4. Wearables

III. Trackers / Inertial sensors

A. Advantages
 1. Minimal set-up
 2. Portable - allows home & community monitoring
B. Inertial Measurement Unit Sensors (IMU) (Horak et al., 2015)
 1. 3 Axes of data collection
 a. Acceleration: Translational acceleration (m/s²)
 b. Gyroscope: Angular velocity (rad/s)
 c. Magnetometer: Magnetic heading (μT)
 2. 20-200 Hz sampling rate
 3. Stream in real time or log data to download later
 4. Demonstration (OPAL APDM, xSENS)
C. Clinical Applications
 1. Correlation with clinical assessments (Duff et al., 2016; 2017)
 2. Interlimb Coordination (Duff et al., 2017; Garrison & Wade, 2015)
IV. Triggered biofeedback
 A. Rational/Questions (Duff et al. 2007; Gilbert & Tassin, 1984; Waters & Pelijovich, 1999)
 B. Procedures – Results

V. Measures of muscle stiffness - Shearwave ultrasound elastography
 A. Uses – assess muscle stiffness pre and post BTx injection (Wolff et al 2018)
 B. Methodology

VI. Tele-rehabilitation
 A. Advantages – Challenges
 B. Sample programs (Burdea et al., 2011; Buick et al., 2016; Cason, 2009; Kanitkar et al., 2017)

VI. References
 • Burdea G, Jain A, Rabin B, Pellosie R, Golomb M. Long-term hand tele-rehabilitation on the
 Playstation 3: benefits and challenges. IEEE. Boston, USA, 2011;1835-1838.
 • Buick AR, Kowalczewski J, Carson RG, Prochazka A. Tele-supervised FES-assisted exercise for
 • Cason J. A pilot tele-rehabilitation program: delivering early intervention services to rural families.
 • Duff SV, Besser MP, DeLiso M, et al. Emergence of Reach-to-Grasp Control after Neonatal Brachial
 Plexus Injury. SFN. Chicago, Ill. 2009, October.
 • Duff SV, Gordon AM. Learning of grasp control in children with hemiplegic cerebral palsy.
 • Duff SV, Sargent B, Kutch JJ, Berggren J, Fetters L. Self-Generated Feedback to Increase Muscle
 • Duff SV, Wade E, Quinn L, Ruthrauff H. Assessment of interlimb coordination in children and adults
 with hemiplegia. Funding: American Society of Neurorehabilitation, Academy of Hand and Upper
 Extremity PT, APTA. 2016.
 • Garrison B, Wade E. Relative Accuracy of Time and Frequency Domain Features to Quantify Upper
 Extremity Coordination. IEEE EMBC. 2015.
 • Gebruers N, Vanroy C, Truijen S, Engelborghs S, De deyn PP. Monitoring of physical activity after
 • Golomb MR, McDonald BC, Warden SJ, et al. In-home virtual reality videogame tele-rehabilitation
 • Horak F, King L, Mancini M. Role of body-worn movement monitor technology for balance and gait
 • Howcraft J, Fehlings D, Zabjek K, Fay L, Liang J, Biddiss E. Wearable wrist activity monitor as an