AACPDM 2017 Pre-Course Hands-On Ultrasound Course: Muscle Localization Review of Scanning Techniques and Hands On Training

Moderators
Katharine Alter MD
Steffen Berweck MD
Florian Heinen MD
Sebastian Schroeder MD

Faculty, Lecture Session:
• Katharine Alter MD
• Joline Brandenburg MD
• Mauricio Delgado MD
• Mark Gormley MD
• Florian Heinen MD
• Sebastian Schroeder MD

Faculty Hands on Session:
• Katharine Alter MD
• Rita Ayyangar MD
• Steffen Berweck MD
• Jeff Brault DO
• Bob Cooper MD
• Florian Heinen MD
• Simon Kappl MD
• Heakung Kim, MD
• Kevin Murphy MD
• Steve Nichols MD
• Sebastian Schroeder MD

Ultrasound Machines for Hands On Session Provided by:

• Fugi Films
• Terason
Acknowledgements

• Thanks to Fugi Films and Terason for supporting this program with an in-kind donation of the equipment used during the course
Disclosures:

• Katharine Alter:
 – Royalties: Demos Medical Publishing
 – Honoraria: Johns Hopkins, Dannemiller, Haymarket Medical, NANA
Disclosures: BoNT Injections for Muscle Hypertonia

• The “On-Label” status of the individual BoNT products varies by
 – Indication
 • Spasticity, dystonia, hemifacial spasm, blepharospasm, migraine, hyperhidrosis, esthetic uses etc.
 – County
 – Age of the patient
 • Children
 • Adults
 • Spasticity: upper limb, post stroke
 • Cervical dystonia
 • Over active bladder
 • Others

• All BoNTs carry a boxed warning related to potential distant spread/dysphagia/respiratory complications and or death
Course Overview

• Primary focus is on hands on US practice to familiarize attendees with the use of US guidance for chemodenervation

• Didactic lectures reviewing US topics and related subjects are also provided

• The following course schedule may be modified to best meet the attendees and cover the subject matter
Morning Session: 8:00-12:00

- **Course Overview** 8:00-8:05 (5 min)
- **Pre-Course Survey (voluntary)** 8:05-8:15 (10 min)

Section I Didactic 8:15-8:55 (40 min)
 - US Basics/comparing guidance 8:15-8:35 (20min)

- **Techniques**
 - Scanning Techniques Demo 8:35-8:50 (15 min)

- **And Injection Demonstration**
 - Questions 8:50-9:00 (10min)

Section II Hands on 9:00-10:20

- **Session A: Upper Limb**
 - Shoulder 9:00-9:15 (15 min)
 - Arm 9:15-9:35 (20 min)
 - Forearm 9:35-10:10 (35 min)
 - Questions 10:10-10:20 (10 min)

- **Session A Upper limb cont.**
 - Hand 10:35-10:55

- **Session B Hands On: Head Neck**
 - Salivary gland: 10:55-11:05 (15 min)
 - Oromandibular 11:05-11:20 (15 min)
 - Neck 11:20-11:35 (15 min)
 - Questions 11:35-11:40 (5 min)

- **Break 10:20-10:35 (15 min)**

- **Session C Didactic Lecture:**
 - Mauricio Delgado MD: Botulinum Toxin Update 2017
 - Questions: 5 minutes

Lunch 12:05-1:15 (1hr 10 min)
Afternoon Session: 1:15-5:00

Part III 1:15-1:30
• Session D: Phenol Chemodenervation Mark Gormley MD
 – 1:15-1:30 (15 min)
Session E: Lower Limb Hands On
 – Hip Girdle
 1:30-1:50 (20 min)
 – Thigh
 1:50-2:10 (20 min)
 – Calf
 2:10-2:40 (30 min)
Session F: Joline Brandenburg MD : 2:40-3:00 (20 min)
• Ultrasound Elastography
• Questions 3:00-3:05 (5 min)

• Break 3:05-3:25 min (20 min)
Session G: Hands On
• US Interventional Practice with Phantoms
 3:25-3:45 (20 min)
Part IV Heakyung Kim/Bob Cooper
 – US Guided ITB Refills
 3:45-4:00 (15 min)
• Part V Open Scan and special requests 4:00-4:40 (40 min)
• Post Course Survey (voluntary) 4:40-4:50 (10 min)
• Final Questions/wrap up 4:50-5:00 (10 min)
US for Chemodenervation Procedures

• An increasing body of evidence supports that US guidance is
 – More accurate than other localization techniques for invasive procedures
 – May improve efficacy of BoNT or chemodenervation procedures
 – Owing to
 • Direct visualization of
 – Target location/depth
 – Structures to be avoided
 – Needle /injectate location
 • Continuous needle visualization during the procedure
In Clinical Practice US Use has Increased Exponentially Owing to

- Reduced cost of highly portable US units which
- High resolution images
- Access to training
 - Expertise of clinicians
- Recognition of the utility of US
US for Diagnostic Purposes

• US is also used for diagnostic evaluation
 – Musculoskeletal disorders
 – Pain conditions
 – Neuromuscular disorders
 • Muscle disease
 • Neuropathies
 • Other conditions
 – Quantitative analysis of muscle changes using strain elastography
What you need to know to start scanning?

US BASIC PHYSICS
Ultrasound Basics:
Sound Wave Pulse Generation

• US waves(λ) are produced by piezoelectric crystals:
 – Thin device that both generates and receives sound wave pulses
• How?
Ultrasound Pulse Generation and Reception

Piezoelectric Crystals

- Convert electrical pulses into vibrations
- Converts returning vibrations back into electrical pulses
- A linear crystal array is used to create planar images
- Returning echoes are processed to create grey scale 2D/3D/4D images
Basic Concepts in Ultrasound Physics

- Depending on a tissue’s acoustic impedance, US waves (λ) are:
 - Reflected at interfaces between:
 - Tissue types or structures of different densities
 - Speed of sound traveling in different tissues
 - Scattered as they propagate through tissues
 - Absorbed traveling on to deeper structure

- Acoustic Impedance = density \times speed of sound
US Basics

- Speed of λ in tissue is used for location
- Reflection refraction characterize tissue
 - Water few interfaces, few echoes = black/hypoechoic
 - Mirror like surfaces of dense connective tissues and bone all echoes, bounces back = white/hyperechoic
Ultrasound Equipment Basics:

Transducers
Are available in
- Various shapes/sizes
- Different frequencies of emitted US waveform (λ)
 - Frequency of US λ determines
 - Depth of penetration
 - Resolution of the image
Resolution

Lateral: Ability to discriminate 2 side by side objects

Axial: Ability to discriminate 2 objects at different depths
Transducer Basics

Select transducer to match required penetration depth

• High frequency (12-17 MHz) for superficial structure
 – Hand, forearm
• Low frequency (3-5 MHz) for deep muscles
 – Piriformis, iliacus, quadratus lumborum
• Commercial transducers have mixed frequencies
 – 5-3, 17-5, 15-4
 – Allows scanning of structures at various depths
US Basics: View convention

- Top of screen/image
 - Superficial
- Bottom of screen/image
 - Deeper structures

Superficial

Deep

Transverse view, posterior calf
US Basics: View convention

• Transverse scans
 – How do you place the transducer on the patient?
 – Conventions vary
 • Standard cross sectional imaging
 – Screen left = patient right
 • Simplified cross sectional imaging
 – Screen left = medial
US Basics: View convention

Longitudinal view Convention

- Place the transducer on the patient so that
 - Proximal = screen left
 - Distal = screen right

Qadriceps tendon and patella

Superficial

Proximal

Deep

Distal
Transducer Handling/Orientation

• To correctly orient the transducer on the patient
 – Look for a mark on one end of the transducer
 • Terason transducers mark = notch
 – The marked end corresponds to screen left on US display
 – To confirm this orientation:
 • Tap the end of the transducer
 • Observe movement on screen to confirm orientation
ULTRASOUND PROPERTIES OF TISSUES
US Basics: Tissue Properties

• Muscle
 – Hypoechoic background (contractile elements/fascicles)
 – Interspersed hyperechoic bands of fibroadipose tissue

• Long axis
 – CT appears as parallel hyperechoic lines, less uniform than in tendon

• Short Axis
 – CT intramuscular tendons, aponeurosis appear as bands and streaks
Ultrasound Properties of tissues

Tendon:
- Highly organized linear strands
 - Anisotropic
 - Hyperechoic
 - Fibrillar

Nerve
- Cross section:
 - Speckled appearance
 - Hypoechoic central fascicle
 - Outer hyperechoic rim
 - “Donut sign”
- Longitudinal:
 - Nerves are less fibrillar/anisotropic than tendon
 - With AROM-
 - Nerves move less than tendons
Ultrasound Properties of Glands

- Glands are distinguished by their uniform echotexture or appearance on B mode US
 - Unlike muscle which has a mixed hyperechoic/hypoechoic pattern
US Muscle identification

- Identification of muscles is based on pattern recognition of
 - Contour lines
 - Adjacent structures
 - Bones
 - Vessels
 - Other muscles
 - Real-time
 - Use AROM/PROM to assist muscle identification

Images:
- Transverse view, proximal calf
- Transverse view, proximal anterior thigh
MS Ultrasound Basics:

- Important Artifacts
 - Anisotropy
 - Acoustic shadowing
 - Acoustic enhancement
Anisotropy: Incidence/angle of US beam

Property of tendon/muscle/nerve: Echogenicity determined by incidence/angle of US beam
Artifactualy hypoechoic if US beam is not perpendicular to imaged structure

► May mimic pathology: Ex. partial tendon tear

Illustration from Rutten M J C M et al. Radiographics 2006;26:589-604 ©2006 by Rad Society of North America
Ultrasound Artifacts: Anisotropy

• Anisotropy is useful during US imaging
• Helps distinguish tendons/nerves from surrounding tissues
 – Tendon and nerve is more anisotropic than surrounding fat
Ultrasound Artifacts: Anisotropy

- Because structures overlap in slightly different planes
 - Cannot be perpendicular to all tissues in one view/direction
- Overcome this by adjusting/rocking the transducer to image at varying angles/views
Ultrasound Artifacts: Acoustic Shadowing

- US does not penetrate all tissue types
- Bone is a dense reflector of US λ
 - An acoustic shadow occurs when all/most the λ reflect off the surface of a tissue
 - No λ pass on to deeper structures
 - Structures deep to this tissue cannot be imaged.
Ultrasound Artifacts: Acoustic Enhancement

- Water/fluids minimally reflect US λ
- Acoustic enhancement occurs when
 - All/most the λ pass through a fluid filled structure to deeper tissues
 - Image deep to a fluid filled cyst is enhanced
Will be covered in the scanning demonstration

TECHNICAL SKILLS
How to Hold the Transducer

Correct

Hold transducer with thumb
Index +/- middle finger
- Maintain contact with patient
- Use heel of hand or 4th & 5th fingers

Incorrect

“Free handing” the transducer
- Hand is not in contact with patient
- Transducer may slip out of place
Interventional MS US: Clinical Pearls

• **In plane/long Axis needle view:**
 – Keep needle parallel to transducer
 – Insert needle at flat angle
 – Poor needle visualization
 • Oblique position
 • Steep angle needle

• **Out of plane/short axis needle view:**
 – Keep needle tip under US beam
 • If needle tip is outside of US beam, visualization is lost
 • May be in untargeted structure or muscle
 – **Walk down technique**
 • Follow movement of needle tip passing through tissues planes to target
Interventional MS Ultrasound: Clinical Pearls

- **Real time injection**
- **US beam is narrow**
 - Only the width of a credit card
 - Not the width of the transducer
- **Keep needle within the US beam**
 - If travel out side of the narrow beam needle visualization is lost
 - May not be in target structure
Interventional MS Ultrasound:
Pearls of Wisdom

• Larger needles are easier to see than small needles
 – Larger needles hurt more
 – 27g hypodermic needles are easily seen
 – Non-insulated needles are visualized better than insulated. Etched Needles are also available

• Small amount of air or injectate (.2-.3 ml) helps define needle location

• Billing: In the USA, to charge/bill for US, a picture or cine-loop must be saved to document the procedure
 • Current CPT Code: 76942: Ultrasound for Needle guidance, aspiration
Chemodenervation Procedures

COMPARISON OF GUIDANCE TECHNIQUES
Traditional Localization Techniques for BoNT Injections: Palpation, EMG, E-Stim

Advantages:

• **Anatomic**:
 – No equipment needed (other than reference guides)

• **EMG/E-Stim**
 – Clinician familiarity

• Some muscles may be easily/quickly isolated
 – Many are not
Techniques for BoNT Injections: Anatomic/EMG/E-Stim

Disadvantages

• Patient related factors
 – Anatomic variations
 – Rearrangements
 • Hypertonia contracture deformity
 – Cooperation
 – Impaired selective motor control
 – Positioning
Localization Techniques for BoNT: EMG/Anatomic

Disadvantages

• Difficult to isolate deep/overlapping muscles

• Co contraction, mass synergy, impaired selective motor control
 – EMG signal falsely attributed to target when needle is in another muscle

• E-Stim
 – Over stimulation
 • Volume conduction can lead to errors
 – Pain from stimulation often requires sedation
Anatomic/EMG/Estim Localization

Disadvantages

Muscle Size: Inversely related to impairment level
Ultrasound for Procedural Guidance

Disadvantages

• Equipment factors
 – Availability
 – Cost

• Clinician related factors
 – Lack of experience
 – Steep learning curve
 – Limited access to training specific for BoNT injections

Transverse view, proximal Thigh/Anterior
US for BoNT Injections: **Advantages**

Improved accuracy

– Complex/overlapping anatomy obscures muscle identification

– Small/large patients

 • Provides direct assessment of target
 – Depth
 – Location
 – Structures to be avoided
US for BoNT Injections: **Advantages**

- **Visualize/isolate target muscles**
 - Quickly
 - Easily
 - Accurately

- **Less painful**
 - Smaller needles

- **US often distracts patients during procedure**
 - Reducing anxiety/stress

In plane injection lateral Gastroc
US for BoNT Injections: **Advantages**

- **High risk targets**
 - Avoid untargeted muscles or structures
 - Vessels/nerves/lung

- **High stakes muscles**
 - SCM
 - Middle Scalene
 - Oromandibular muscles
 - Pterygoids
 - Others
US for BoNT Injections:

Advantages

Improved accuracy

- When localization limited by:
 - Involuntary muscle activity
 - Co-contraction
 - Motor control
 - Deformity
 - Post surgical changes
 - Patient cooperation
 - US does not require AROM to isolate muscle

- **Muscle identification is based on pattern recognition**
BoNT Injections: Why Use US?

Focal dystonia

- Goal: identify and target individual muscle fascicles
 - Ex: FDS digit 3 vs. 4
- US increases accuracy and decreases time to isolate correct muscle fascicles
- Reduces pain

FDS longitudinal view, mid forearm
Short axis view of needle
BoNT Injections: Why use US?

Advantages

• Non-muscle targets:
 – Salivary Glands

• Correctly isolating gland is critical to reduce the risk of dysphagia

• EMG and E-Stim are of no help
BoNT Injections: Why use US?

- Visualize toxin injection
 - Confirms correct muscle
- Assess volume of injectate in muscle
 - Reduces risk of over injection at one site
 - Minimize spread to adjacent muscles or structures
Comparison of Injection Techniques

<table>
<thead>
<tr>
<th></th>
<th>Palpation</th>
<th>EMG</th>
<th>Stimulation</th>
<th>Sonography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>+/-</td>
<td>+/-</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Practicability</td>
<td>+</td>
<td>-</td>
<td>+/-</td>
<td>++</td>
</tr>
<tr>
<td>Availability</td>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>Pain</td>
<td>+</td>
<td>-</td>
<td>+/-</td>
<td>+++</td>
</tr>
<tr>
<td>Speed</td>
<td>+/-</td>
<td>-</td>
<td>+/-</td>
<td>++</td>
</tr>
<tr>
<td>Evaluation</td>
<td>+/-</td>
<td>-</td>
<td>+/-</td>
<td>+++</td>
</tr>
<tr>
<td>Future research</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+++</td>
</tr>
</tbody>
</table>
Ultrasound for BoNT Injection: Summary

• Localization techniques
 – Palpation
 – EMG
 – Nerve stimulators
 – Ultrasound

• All have advantages & disadvantages

• Best Strategy:
 – Be skilled in multiple techniques
Ultrasound for BoNT Injection: Summary

• US is a useful technique to add to your tool box for BoNT injections
 – Improved speed/accuracy of target localization
 – Decreased pain
 – Reduced risk of harm

• Initial learning curve is steep
 – Worth the time and effort
US Scanning Demonstration

• How to hold the transducer....and why
• Scanning limbs/structures
• Injection Techniques
 – In plane
 – Out of plane
Morning Session: 8:00-12:00

• Course Overview 8:00-8:05 (5 min)
• Pre-Course Survey (voluntary) 8:05-8:15 (10 min)

Section I Didactic 8:15-8:55 (40 min)
 – US Basics/comparing guidance 8:15-8:35 (20 min)

• Techniques
 – Scanning Techniques Demo 8:35-8:50 (15 min)

• And Injection Demonstration
 – Questions 8:50-9:00 (10 min)

Section II Hands on 9:00-10:20

• Session A: Upper Limb
 – Shoulder 9:00-9:15 (15 min)
 – Arm 9:15-9:35 (20 min)
 – Forearm 9:35-10:10 (35 min)
 – Questions 10:10-10:20 (10 min)

• Break 10:20-10:35 (15 min)
• Session A Upper limb cont.
 – Hand 10:35-10:55

• Session B Hands On: Head Neck 10:55-11:45 (50 min)
 – Salivary gland: 10:55-11:05 (15 min)
 – Oromandibular 11:05-11:20 (15 min)
 – Neck 20 min 11:20-11:35 (15 min)
 – Questions 11:35-11:40 (5 min)

• Session C Didactic Lecture:11:40-12:00
 – Mauricio Delgado MD:Botulinum Toxin Update 2017
 – Questions: 5 minutes

Lunch 12:05-1:15 (1 hr 10 min)
Section II: Hands On Upper Limb

• Shoulder:
 – Pectoralis major/minor
 – Latissimus dorsi
 – Subscapularis

• Arm:
 – Biceps Brachialis
 – Brachioradialis

• Forearm:
 – Flexor forearm muscles
 • FCR/Pronator teres
 • FDS/FDP
 • FCU/FDP
 • FPL

• Upper Limb/Forearm continued
 – Extensor forearm muscles
 • Supinator
 • EDC /ECR
 • Pronator Quadratus
 – Hand
 • Lumbricals interossei

• Head and neck
 – SCM/Scalenes
 – Masseter/Salivary gland
Afternoon Session: 1:15-5:00

Part III 1:15-1:30
- **Session D: Phenol Chemodenervation**
 Mark Gormley MD
 - 1:15-1:30 (15 min)

Session E: Lower Limb Hands On
- Hip Girdle
 1:30-1:50 (20 min)
- Thigh
 1:50-2:10 (20 min)
- Calf
 2:10-2:40 (30 min)

Session F: Joline Brandenburg MD:
- **2:40-3:00** (20 min)
 - Ultrasound Elastography
 - Questions 3:00-3:05 (5 min)

Break 3:05-3:25 min (20 min)

Session G: Hands On
- **US Interventional Practice with Phantoms**
 3:25-3:45 (20 min)

Part IV Heakyung Kim/Bob Cooper
- **US Guided ITB Refills**
 3:45-4:00 (15 min)

Part V
- Open Scan and special requests
 4:00-4:40 (40:min)
- Post Course Survey (voluntary)
 4:40-4:50 (10 min)
- Final Questions/wrap up
 4:50-5:00 (10 min)
Part III Hands on Demonstration and Scanning

Lower Limb Muscles
- Iliopsoas, Adductors
 - Obturator nerve
- Hamstrings/Quadriceps
- Lower leg
 - Antero-lateral calf
 - Fibularis longus, Extensor hallucis longus
 - Posterior calf
 - Gastrocnemius, Tib. Poster, Soleus, FDL, FHL

Interventional Practice/Open Scanning
- Phantom Demo and Practice
 - In-plane
 - Out of plane
- Open Scan/Special Requests
 - Review previously scanned regions
Ultrasound for Chemodenervation Procedures: Summary

• All guidance techniques have advantages & disadvantages
• Best Strategy:
 – Be skilled in multiple techniques
• The goal of this course was to provide attendees with a
 – Review of US and scanning techniques
 – Hands on practice for
 – Pattern recognition
 – Muscle/structure identification
 – Procedural guidance skills
• Let’s see how we did:
 – Post course survey