Assessing structural connectivity in patients with Unilateral Spastic Cerebral Palsy with and without dysphagia

Lucia Mourao, PhD, SLP1,2, Andrew Gordon, PhD2, Kathleen Friel, PhD3, Georgia A. Malandraki, PhD, CCC-SLP, BCS-S1,2

1 Speech, Language, & Hearing Sciences, Purdue University, West Lafayette, IN | 2 Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY | 3 Weill Cornell Medical College, New York, NY

Objective

• To examine correlations between the structural integrity of the corpus callosum (CC) and dysphagia signs in children with unilateral spastic CP caused by left-hemisphere lesions.

Methods

• 13 children (7 male) with USCP and left hemispheric lesion were included. Ages ranged from 5 to 17 years of age.

• 4 had periventricular leucomalacia (PVL), 8 had middle cerebral artery (MCA) injury and one had cortical and subcortical (thalamus) injury.

• All children underwent a clinical swallowing evaluation using the Dysphagia Disorders Survey (DDS)1 and a DTI scan.

• DTIStudio software was used for the tractography analysis.

• DTI analysis was performed for the entire CC and into three regions: genu, body and splenium.

Results

In Figure 1, we present the total DDS and DDS Part 2 scores (related to swallowing skills specifically) for all children. These scores revealed that 7 children were classified with mild dysphagia and 6 with no dysphagia.

Total DDS Results

Figures 3a to 3e present the correlations between DDS total scores and FA (genu), number of fibers of genu, body, splenium and entire CC. These results also show a significant negative correlation between Total DDS scores and these measurements. No other DTI variable was significantly correlated with DDS scores.

Results

Total DDS Results

Figures 3a to 3e present the correlations between DDS total scores and FA (genu), number of fibers of genu, body, splenium and entire CC. These results also show a significant negative correlation between Total DDS scores and all these measurements. No other DTI variable was significantly correlated with DDS scores.

Discussion

• Some children with unilateral spastic CP present with mild to moderate oropharyngeal dysphagia, as also observed by Benfer et al (2003).4

• Our results indicate that callosal motor fibers play a role in the communication between the two hemispheres for swallowing and feeding activities confirming the notion that swallowing is a primarily bilateral activity.

Conclusion

• In children with congenital left-hemisphere lesions reduced structural integrity of the corpus callosum is associated with increased signs of dysphagia.

• This study reveals the first evidence that the corpus callosum plays a role in the interhemispheric communication needed to control the function of swallowing with significant implications for treatment.

References

Grant #2013/2615-6, Sao Paulo Research Foundation (FAPESP)

For more information, please contact: Dr. Mourao: lfiguei@purdue.edu