AACPDM 2014 Pre-Course 4: B Mode Ultrasound for Muscle Hypertonia and Neuromuscular Disorders: Review of Scanning Techniques and Hands On Training

Moderators
Katharine Alter MD
Florian Heinen MD

Faculty, Lecture Session:

• Katharine Alter MD
• Jahnnaz Dastgir MD
• Florian Heinen MD
• Steffen Berweck MD
• Sebastian Schroeder MD

• Faculty Hands on Session:
• Rita Ayyangar MD
• Katharine Alter MD
• Steffen Berweck MD
• Hank Chambers MD
• Bob Cooper MD
• Christine Jansen MD
• Florian Heinen MD
• Heakung Kim, MD
• Steve Nichols MD

Ultrasound Machines for Hands On Session Provided by:

— Terason
Agenda: Introduction to Ultrasound Guidance for BoNT Injections

Didactic Session

• Course Overview 5 minutes
• US Scanning Basics 20 minutes
• Comparison Of Guidance Techniques 10 minutes
• Muscle US, Neuromuscular Disorders 30 minutes
• Scanning Techniques Demonstration 15 minutes
 – Alter/Berweck
• Questions/break 15 minutes
• Hands On Scanning 150 minutes
Pre-Course 4 Agenda Continued

Lower Limb Hands On Scanning
• 60 minutes
 • Hip/Adductors
 • Hamstrings/Quadriceps
 • Calf: anterior/posterior

Upper Limb, Hands On Scanning
• 70 minutes
 – Shoulder
 • Pectoralis Major
 • Latissimus
 – Elbow
 • Biceps, brachialis, brachioradialis
 – Forearm
 • FCR, FDS, FDP, FPL
 • Pronators
Pre-Course 4 Agenda Continued

Head and Neck

• 20 minutes
• Salivary glands
• Masseter
Disclosures

• Katharine Alter
 – Consultant, Allergan
 – Consultant, Terason

• Steffen Berweck

• Florian Heinen

• Sebastian Schroeder
Ultrasound Basics to Guide BoNT Injections

• In the USA
 – BoNT injections are off label for children
 • In other countries BoNT is on label for children with CP
 – BoNT is on label in adults for many indications including
 • Spasticity: upper limb, post stroke
 • Cervical dystonia
 • Over active bladder
 • Others …..
 – All BoNTs carry a boxed warning related to the potential for distant spread, dysphagia, respiratory complications
Diagnostic Ultrasound (US) and US for Procedural Guidance

- Why should you consider using US for these procedures?
- US often provides useful information when evaluating a patient with suspected neuromuscular or musculoskeletal disorders
 - Assists in establishing or establishes a diagnosis or directing work up
- For procedural guidance
 - Correctly isolates the target for injection which is important for
 - Efficacy
 - Minimizing risk
US for Chemodenervation Procedures

• Evidence supports US guidance as more accurate localization technique for a variety of invasive procedures including chemodenervation procedures

 – Owing to
 • Direct visualization of
 – Target
 – Structures to be avoided
 – Needle location
 • Continuous needle visualization during the procedure
US Use in Clinical Practice Has Increased Exponentially

• Reduced cost of US units that
 – Provide high resolution images
 – Portable

• Access to training
 – Expertise of clinicians

• Recognition of the utility of US
Diagnostic Ultrasound

- Ultrasound is also increasingly used for diagnostic evaluations
 - Musculoskeletal disorders
 - Neuromuscular disorders
 - Muscle disease
 - Neuropathies
 - Other conditions
What you need to know to start scanning?

US BASIC PHYSICS
Ultrasound Basics:
Sound Wave Pulse Generation

• US waves(λ) are produced by piezoelectric crystals:
 – Thin device that both generates and receives sound wave pulses

• How do they do that?
Ultrasound Pulse Generation and Reception

Piezoelectric Crystals

- Convert electrical pulses into vibrations
- Converts returning vibrations back into electrical pulses
- A linear array of crystals is used to create planar images
- Returning echoes are processed to create grey scale 2D/3D/4D images
Ultrasound Equipment Basics:

• Piezoelectric crystal arrays are placed in transducers:
• Transducers
 – Determine the frequency of US waveform (\(\lambda \))
 – Frequency of US \(\lambda \) determines
 • Depth of penetration
 • Resolution
• Image processing/reconstruction
 – \(\lambda \) returning from near objects reach the transducer before those from distant objects
 – Image reconstruction is performed using Time:Distance constant or coefficient
Ultrasound: Transducer Selection

• Size/Shape of transducer
 – Linear:
 • Best for flat surfaces
 – Curvilinear:
 • Best for abdomen/pelvic/GYN
 – Hockey stick:
 • Hand
 • Small irregular surfaces

• Transducer Frequency determines
 – Depth of sound penetration
 – Resolution
Ultrasound Basics: Transducers

<table>
<thead>
<tr>
<th>MHz</th>
<th>Depth/Penetration</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12-20 cm</td>
<td>OB/GYN</td>
</tr>
<tr>
<td>5</td>
<td>12-15 cm</td>
<td>Deep muscles</td>
</tr>
<tr>
<td>7.5</td>
<td>8-10 cm</td>
<td>Leg</td>
</tr>
<tr>
<td>10</td>
<td>5 cm</td>
<td>Forearm</td>
</tr>
<tr>
<td>12-17</td>
<td>3.5-2 cm</td>
<td>Hand, face</td>
</tr>
</tbody>
</table>

Select transducer to match required penetration depth

- 12-17 MHz for superficial structure
 - Hand, forearm
- 3-5 MHz for deep muscles
 - Piriformis, iliacus, quadratus lumborum
- Most transducers have mixed frequencies
 - 5-3, 12-5, 15-4
Basic Concepts in Ultrasound Physics

- Depending on acoustic impedance US waves (λ) are:
 - **Reflected** at the *interface* between
 - Two tissue types or structures of different densities
 - Speed of sound traveling in different tissues
 - **Scattered** as they propagate through tissues
 - **Absorbed** traveling on to deeper structure

- Acoustic Impedance = \(\text{density} \times \text{speed of sound} \)
Appearance of echoes depends on:
Size of scatters (L) relative to the US wavelength (λ)
Ex: Wavelength of 10-MHz ultrasound = 0.15 mm

Weak scattering from blood and fluids L<< λ
Appears dark or hypoechoic

Strong echoes from “mirror-like” interfaces L>> λ
Appears bright or hyperechoic
US Basics: View convention

- Top of screen/image
 - Superficial
- Bottom of screen/image
 - Deeper structures
- Transverse view
 - Conventions vary
 - Screen left = patient right
 - Screen left = medial

Superficial

Deep

Transverse view, posterior calf
US Basics: View convention

Longitudinal view Convention

• Proximal = screen left
• Distal = screen right

Qadriceps tendon and patella

Proximal Distal
Transducer Handling/Orientation

• To correctly orient the transducer on the patient
 – Look for a mark on one end of the transducer
 • Terason transducers mark = notch
 – The marked end = left of the display screen
 – To confirm this orientation tap one end of the transducer to confirm the orientation
ULTRASOUND PROPERTIES OF TISSUES
US Basics: Tissue Properties

- **Muscle**
 - Hypoechoic background (contractile elements/fascicles)
 - Interspersed hyperechoic bands of fibroadipose tissue
- **Long axis**
 - CT appears as parallel hyperechoic lines, less uniform than in tendon
- **Short Axis**
 - CT intramuscular tendons, aponeurosis appear as bands and streaks
US Muscle identification

• Identification of muscles is based on pattern recognition of
 – Contour lines
 – Adjacent structures
 • Bones
 • Vessels
 • Other muscles
 – Real-time
 • Use AROM/PROM to assist muscle identification
Ultrasound Properties of Glands

• Glands are distinguished by their uniform echotexture or appearance on B mode US
 – Unlike muscle which has a mixed hyperechoic/hypoechoic pattern
US Basics: Transducer Orientation

Long Axis of Transducer

Short Axis of Transducer
How to Hold the Transducer

Correct

Hold transducer with thumb
Index +/- middle finger
Maintain Contact with patient using
Heel of hand or 4th 5th fingers

Incorrect

“Free handing” the transducer
Hand is not in contact with patient
This allows the transducer to slip out of place
Limb/Muscle Orientation

Long Axis / Longitudinal

Short Axis / Transverse
Interventional MS US: Clinical Pearls

• In plane/long Axis needle view:
 – Keep needle parallel to transducer
 – Insert needle at flat angle
 – Poor needle visualization
 • Oblique position
 • Steep angle needle

• Out of plane/short axis needle view:
 – Keep needle **tip** under US beam
 • If needle **tip** is outside of US beam, visualization is lost
 • May be in untargeted structure or muscle
 – **Walk down technique**
 • Follow movement of needle tip passing through tissues planes to target
Interventional MS Ultrasound: Clinical Pearls

- **Real time injection**
- **Keep needle within the ultrasound beam**
 - If travel out side of the narrow beam needle visualization is lost
 - May not be in target structure
Interventional MS Ultrasound: Pearls of Wisdom

- Larger needles are easier to see than small needles
 - Larger needles hurt more
 - 27g hypodermic needles are easily seen
 - Non-insulated needles are visualized better than insulated. Etched Needles are also available

- Small amount of air or injectate (.2-.3 ml) helps define needle location

- Billing: In the USA, to charge/bill for US, a picture or cine-loop must be saved to document the procedure
 - Current CPT Code: 76942: Ultrasound for Needle guidance, aspiration
Chemodenervation Procedures

COMPARISON OF GUIDANCE TECHNIQUES
Traditional Localization Techniques for BoNT Injections: Palpation, EMG, E-Stim

Advantages:

- **Anatomic:** No equipment needed
- **EMG/E-Stim**
 - Clinician familiarity
- **Some muscles may be easily/quickly isolated**
 - Many are not
Techniques for BoNT Injections: Anatomic/EMG/E-Stim

Disadvantages

• Patient related factors
 – Anatomic variations
 – Rearrangements
 • Hypertonia
 • Contracture
 • Deformity
 – Cooperation
 – Impaired selective motor control
Localization Techniques for BoNT: EMG/Anatomic

Disadvantages

• Difficult to isolate deep/overlapping muscles

• Co contraction, mass synergy, impaired selective motor control
 – EMG signal falsely attributed to target when needle is in another muscle

• E-Stim
 – Over stimulation
 • Volume conduction can lead to errors
 – Pain from stimulation often requires sedation
Anatomic/EMG/E-stim Localization Disadvantages

Patient related factors:

Muscle size, architecture and shape all vary with age

Heinen et al
Anatomic/EMG/Estim Localization

Disadvantages

Heinen et al

GMFCS I

GMFCS III

Sonography
Diameter
Echogenicity

Muscle Size: Inversely related to impairment level
Ultrasound for Procedural Guidance

Disadvantages

• Equipment factors
 – Availability
 – Cost

• Clinician related factors
 – Lack of experience
 – Steep learning curve
 – Limited access to training specific for BoNT injections

Transverse view, proximal Thigh/Anterior
US for BoNT Injections: **Advantages**

Improved accuracy

– Complex/overlapping anatomy obscures muscle identification

– Small/large patients

 • Provides direct assessment of target
 – Depth
 – Location
 – Structures to be avoided
US for BoNT Injections: **Advantages**

- **Visualize/isolate target muscles**
 - Quickly
 - Easily
 - Accurately

- **Less painful**
 - Smaller needles

- **Pediatric patients often require no sedation**
 - Distract patients during procedure

In plane injection lateral Gastroc
US for BoNT Injections: **Advantages**

- Isolate deep muscles:
 - Iliopsoas
 - Piriformis
 - Tibialis Posterior
US for BoNT Injections: **Advantages**

- **High risk targets**
 - Avoid untargeted muscles or structures
 - Vessels/nerves/lung

- **High stakes muscles**
 - SCM
 - Middle Scalene
 - Oromandibular muscles
 - Pterygoids
US for BoNT Injections: *Advantages*

Improved accuracy

- When localization limited by:
 - Involuntary muscle activity
 - Co-contraction
 - Motor contro
 - Deformity
 - Post surgical changes
 - Patient cooperation
 - US does not require AROM to isolate muscle
- **Muscle identification is based on pattern recognition**
BoNT Injections: Why Use US?

Focal dystonia

- Goal: identify and target individual muscle fascicles
 - Ex: FDS digit 3 vs. 4
- US increases accuracy and decreases time to isolate correct muscle fascicles
- Reduces pain

FDS longitudinal view, mid forearm
Short axis view of needle
BoNT Injections: Why use US?

Advantages

• Non-muscle targets:
 – Salivary Glands

• Correctly isolating gland is critical to reduce the risk of dysphagia

• EMG and E-Stim are of no help
BoNT Injections: Why use US?

- **Visualize toxin injection**
 - Confirms correct muscle

- **Assess volume of injectate in muscle**
 - Reduces risk of over injection at one site
 - Minimize spread to adjacent muscles or structures
Comparison of Injection Techniques

<table>
<thead>
<tr>
<th></th>
<th>Palpation</th>
<th>EMG</th>
<th>Stimulation</th>
<th>Sonography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>+/-</td>
<td>+/-</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Practicability</td>
<td>+</td>
<td>-</td>
<td>+/-</td>
<td>++</td>
</tr>
<tr>
<td>Availability</td>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>Pain</td>
<td>+</td>
<td>-</td>
<td>+/-</td>
<td>+++</td>
</tr>
<tr>
<td>Speed</td>
<td>+/-</td>
<td>-</td>
<td>+/-</td>
<td>++</td>
</tr>
<tr>
<td>Evaluation</td>
<td>+/-</td>
<td>-</td>
<td>+/-</td>
<td>+++</td>
</tr>
<tr>
<td>Future research</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+++</td>
</tr>
</tbody>
</table>
Ultrasound for BoNT Injection: Summary

• US is a useful technique to add to your toolbox for BoNT injections
 – Improved speed/accuracy of target localization
 – Decreased pain
 – Reduced risk of harm

• Initial learning curve is steep
 – Worth the time and effort
Ultrasound for BoNT Injection: Summary

• Localization techniques
 – Palpation
 – EMG
 – Nerve stimulators
 – Ultrasound
• All have advantages & disadvantages
• Best Strategy:
 – Be skilled in multiple techniques
US Scanning Demonstration

• How to hold the transducer....and why
• Scanning limbs/structures
• Injection Techniques
 – In plane
 – Out of plane
US EVALUATION OF NEUROMUSCULAR DISORDERS
Slides will be available online.

MUSCLE IDENTIFICATION/REVIEW
Hands on Demonstration and Scanning

- Lower Limb Muscles
 - Iliopsoas, Adductors
 - Hamstrings/Quadriceps
 - Lower leg
 - Antero-lateral calf
 - Fibularis longus, Extensor hallucis longus
 - Posterior calf
 - Gastrocnemius, Tib. Posterior, Soleus, FDL
Hands On Scanning Demonstration
Upper Limb, Head Neck

- Pectoralis Major
- Biceps/Brachialis
- Flexor Forearm

- Sternocleidomastoid
- Masseter
- Parotid/Submandibular