Musculoskeletal Pain in CP: Opportunities for Prevention?

David P. Roye, MD

St. Giles Professor of Pediatric Orthopaedic Surgery, Columbia University
Executive Medical Director, Weisler Family Cerebral Palsy Center at Columbia University
Director, Pediatric Orthopaedic Surgery, Morgan Stanley Children’s Hospital of New York
Attending Orthopaedic Surgeon, NewYork-Presbyterian Hospital

Disclosures

1. Consultant:
 a. Cerebral Palsy Foundation
2. Research Support:
 a. Cerebral Palsy Foundation
 b. POSNA
 c. Children’s Spine Foundation
3. Divisional Support:
 a. OMEGA Medical Grants
 b. Biomet
4. Position in Company or Organization:
 a. JBJS Editor (no salary)
 b. Cerebral Palsy Foundation
 c. CMO Children of China
 d. President of International Healthcare Leadership
5. Travel Support:
 a. Biomet
 b. Stryker

Outline

- Musculoskeletal Pain in Cerebral Palsy (CP)
- Treatments to Prevent Spasticity
 - Upper Extremity
 - Hip
 - Knee
 - Foot and Ankle
 - Spine
 - Other Factors
 - Future Directions

Pain in Cerebral Palsy (CP)

- Majority (67-82%) of adults report chronic pain (Schwartz et al, 1999)
- Increased risk of osteoarthritis – aberrant load paths due to muscle spasticity/tone and biomechanics compounded by aging and time
 - 59% of 160 CP pts found with signs of osteoarthritis (radiographic) (Boldingh et al, 2005)
 - 27% (age between 15-25 yo) found with osteoarthritis as opposed to 4% in general population (Cathels et al, 1993)

General Theme

- Abnormal muscle tone → Disruption of normal load paths → arthritic joint degeneration
- Muscle – often the generator of pain
- Goal – Early Surgical Intervention as PREVENTION technique
- Other options include methods to reduce spasticity and abnormal tone

Intrathecal Baclofen

- Implanted pump with direct access to intrathecal space
- Muscle relaxant with additional effect in reducing nociception
- Intrathecal baclofen requires only ~1% of the oral dose to achieve similar or better response
Deep Brain Stimulation

- Implanted electrode that gives stimulation to targeted sites in brain based on physiological motor disability
- Stimulates areas of brain to enable better motor control to combat involuntary movements such as choreo-athetosis and dystonia

Bilateral pallidal deep brain stimulation for the treatment of patients with dystonia-chooreoathetosis cerebral palsy: a prospective pilot study

- Multicenter prospective study of 13 adult patients with CP
- Significant improvement in dystonia at 1 year (34.7 → 24.4) per Burke-Fahn-Marsden dystonia rating scale
- Significant improvement in domain of body pain

Selective Dorsal Rhizotomy (SDR)

- Relieves spasticity and increases function by interrupting reflex arcs of selective nerve roots
- Does not obviate need for orthopaedic surgery

Bilateral deep anterior cerebellar stimulation (DACS)

- 10 patients with CP and symptoms of focal/segmental dystonia
- Spasticity in upper extremities improved in 8 patients from median 3 → 1.5 (Ashworth scale)
- Unified Dystonia Rating Scale (UDRS) total score improved from median 18 → 10.3
Retrospective review of 42 patients with CP after SDR

- 92% of patients improved at least 1 Ashworth point in at least 2 independent motor groups
- Mean Modified Ashworth Scale score for all upper extremity muscle groups improved from 1.34 to 1.22 (p < 0.001)

Survey of 88 patients with CP (mean age 25.6 y), at 19.6 y after SDR

- 64% of patients extremely or very satisfied with SDR outcomes (Diener Satisfaction with Life Scale)
- However, 44% still reported recent pain (numeric rating scale) – prevalence similar to literature for chronic pain in adults with CP – Is SDR really beneficial for pain management and does reduction in spasticity help reduce pain?

Problem with Reporting Outcome Measures

- Important to measure HRQoL (Health-Related Quality of Life) and Symptoms as opposed to symptoms alone because we want to know impact of pain on patient’s ability to function in everyday life
- Goal - Look for validated, widely used instruments that measure a number of domains – again, the effect of the pain not just the symptoms

Botulinum Toxin in Treatment of CP

- Spastic muscle growth lags neighboring structures → contractures, deformity → pain → decrease function
- Hypertonic muscles → muscle shortening
 - Passive stretching of relaxed muscles may restore longitudinal muscle growth
- BTX hypothesized to restore muscle length since it causes weakening in spastic muscles → promote muscle growth and gain in strength → avoid abnormal forces on bones, contractures

Cross-sectional survey of 131 patients with spasticity (12% with CP)

- Does spasticity relate to pain and consequently, does BoNTa decrease pain?
- 85/131 (65%) patients with spasticity report pain (87% of CP)
- 80% reported pain related to self-perception of spasticity
- 62% believed BoNTa decreased pain
Physical Therapy

Survey Results of Pain Treatment in Adults with Cerebral Palsy

- Cross-sectional survey of 83 adults with CP
- 63% reported chronic pain
- Most common interventions (56% in the past, 35% presently) are physical including physical therapy and strengthening
 - Rated as moderately effective

Surgical Treatment: Upper Extremity

Constraint Therapy for Upper Extremity

- Constraint – induced movement therapy for arm function training in hemiplegic cerebral palsy
- Unilaterally affected patients with CP typically use less affected upper extremity (UE) to increase efficiency (developmental disregard)
- Constraint-induced Movement Therapy
 - Constraint of unaffected UE
 - Repetitive practice of movements of the affected UE
 - Behavioral/motion therapy to improve motor patterns

Effectiveness of constraint-induced movement therapy on upper-extremity function in children with cerebral palsy: a systematic review and meta-analysis of randomized controlled trials

- Analyzed 27 RCT
- Medium beneficial effect (d = 0.546) compared with conventional therapy

Upper Extremity

- Orthopaedic procedures used to improve function, spasticity, deformity and PAIN
- Consists of soft tissue releases, tendon transfers, and bone/joint stabilization
- Major deformities:
 - Elbow flexion
 - Forearm pronation
 - Wrist flexion
 - Finger deformity
 - Thumb-in-palm
- Mostly performed by hand surgeons
- Treatment plan: Surgery + Occupational Therapy → Spinning + Rehab
Surgical Treatment: Hip

Hip Dysplasia in CP - Why does it matter?

- Progression of hip subluxation or dislocation is associated with:
 - Chronic pain
 - Hygiene difficulty
 - Sitting imbalance
 - Gait abnormality
- Salvage options for the skeletally mature patient with a neglected hip are limited

PREVENTION IS KEY

Cause of Hip Dysplasia

- Normal hip growth: born with anatomically normal hips
- Normal hip develops due to growth, muscle strength, and normal position of femoral head in acetabulum
- Without opposing pressure, hips become dysplastic

Cause of Hip Dysplasia

- In CP, spastic hip adductors and flexors compress the femoral head against the posterolateral acetabulum and labrum, leading to progressive deformity
- Without normal pressure from femoral head in acetabulum, femoral head will migrate laterally and acetabulum shape will deform

Hip Surveillance

- Every 6 months, beginning at diagnosis of CP
 - Physical Exam
 - Radiographic Evaluation
- The more severe the hip pathology, the more intensive the surveillance

Clinical Hip Surveillance

- Worsening of GMFCS Level
- Ashworth Scale (spasticity of major muscle groups)
- Pain
 - Difficulty with sitting/standing/walking
- Passive and dynamic range of motion
 - Hip flexion/extension
 - Hip abduction/adduction
 - Hip internal/external rotation
 - Galleazzi/Windswept position
Radiographic Hip Surveillance

- AP X-Ray in supine position
- Initial radiographs at 1 year
 - Every year, if patient is ambulatory
 - Every 6 months, if evidence or high risk of dysplasia
- Reimer’s migration percentage:
 \[\geq 30 \text{–} 40\% \quad \text{at risk for subluxation / dislocation} \]

Evidence for why hip dysplasia matters?

- 77 children/care-givers with CP surveyed
- 29% of caregivers reported hip pain
 - Painful hips vs painless hips (Migration percentage (MP):
 \(40.9\% \text{ vs } 26.5\%\))
 - MP \(\geq 50\% \) (subluxation/dislocation) - 60% report hip pain
 - MP \(< 50\% \) - 86% report no hip pain

Evidence for Hip Surveillance: Conclusions

- Good evidence for Hip Surveillance to prevent pain
 - Not new information…but still not universally applied!
- Dislocations can be reduced and prevented with careful surveillance
- Multi-disciplinary team approach is critical
- Standardized radiographic screening = early identification
- Timely surgical intervention once displacement is identified = increased likelihood of successful surgery
- Indication for surgery: 30% migration index

Evidence for Hip Surveillance

- AP X-Ray in supine position
- Initial radiographs at 1 year
 - Every year, if patient is ambulatory
 - Every 6 months, if evidence or high risk of dysplasia
- Reimer’s migration percentage:
 \[\geq 30 \text{–} 40\% \quad \text{at risk for subluxation / dislocation} \]

What happens to untreated hips for adults?

- Significant number of adult patients with CP (as high as 75.5%) report of hip pain (Hodgkinson et al, 2001)
- Pain may be grossly underreported, especially for those with poor cognitive ability and limited communication skills
 - Survey of 123 GMFCS IV/V patients (manuscript)
 - 31% report moderate/severe/very severe pain in preceding 4 weeks
 - 7% report pain every/almost every day

Continuum of Pathology and Intervention
Treatment Options for Adult Dislocated Hip

- **Limited Options** for Severely Dysplastic Hip
 - Cause of hip pain, degenerative joint disease
 - Emphasizes importance of preventive surveillance programs

Case Presentation: 9 year old male, spastic diplegia
Bilateral Varus Rotational Osteotomy, R Pelvic Osteotomy, Hip Adductor Tenotomy Release, Botox Injections

Increased difficulty in walking with a walker
Surgery done to prevent losing ability to walk with the walker

Surgical Treatment: Knee

What if adult patients were not treated?

- Knee flexion deformity (crouch knee) (Morrell et al, 2002)
 - Most common knee abnormality in spastic CP
 - Associated with hip/ankle flexion contractures
- Progressive flexion → increase quadriceps force → overstretching quadriceps muscle fibers and infrapatellar tendon leading to:
 - Patella Alta → PAIN
 - Patellar fragmentation → PAIN
 - Chondromalacia → PAIN
 - Joint instability, muscle weakness, pain

Knee – Patella Alta

- 58-72% of pts with spastic CP
- Hamstring contracture with rectus spasticity → constant quadriceps contraction during stance phase of gait → chronic forces through patellofemoral joint → patella alta
- Insall ratio = B-C/A-B
 - A-B = greatest diagonal length of patella in 30 degrees knee flexion
 - B-C = patellar tendon length
 - Patella alta if ≥ 1.2

Bilateral Varus Rotational Osteotomy, R Pelvic Osteotomy, Hip Adductor Tenotomy Release, Botox Injections

At 1 year and 5 months postop from these surgical procedures and 5 months post-instrument removal surgery

Increased difficulty in walking with a walker
Surgery done to prevent losing ability to walk with the walker
Patella Alta

- Exacerbated by crouch gait
 - Extensors: (1) hip extensor, (2) knee extensor, (3) ankle plantar flexors
 - Weak in crouch gait and may be long
 - Standing/walking in flexion + spasticity → contractures of (4) iliopeos and (5) hamstrings
- Higher stresses at knee leads to knee pain, patella alta, and possible fragmentation/fracture of inferior pole of patella

(Crodda et al, 2006)

Patella Alta

- Conservative Treatment (Murphy 2010)
 - Quadriceps stretching to alleviate excessive rectus femoris tightness
 - Minimize anterior pelvic tilt
 - Increase prone lying; Abdominal wall and hip extensor strengthening
 - Improve patella tracking in trochlear groove
 - Patellar taping techniques
 - Patellar neoprene orthoses
 - Intrarticular injections (steroids, anesthetics)
 - Medications - NSAIDs

Case Study

- HPE: 24 YO M PMH right spastic hemiplegia cerebral palsy
- Recurrent R patellar subluxations and pain
- Prior to surgery, patient was experiencing significant decrease in ability to ambulate and to climb stairs.
- PE:
 - Significant patella alta to R knee
 - Slight valgus deformity

Patient/Caregiver Report

- Was told that there were no options to improve function or reduce pain by community providers
- No prevention advice received

Because of lack of prevention/prophylactic measures – now need surgical treatment
- Surgical Plan: OR for R MPFL reconstruction with tibial tubercle osteotomy

Pre-operative Radiographs
Intra-operative Radiographs

- Placement of screws to stabilize osteotomy
- Note correction of alignment

Achieving Improvement in Range of Motion

Case Study – Take Home Points

- My intention is NOT to talk about techniques for performing orthopedic surgery, but how to prevent them

- Hindsight Prevention Measures for this Patient
 - Spasticity control of lower extremities at appropriate age
 - Earlier treatment of patella alta

- There is no magical cure-all, BUT, with preventative measures, a major orthopedic surgery could have been avoided.

Surgical Treatment: Ankle and Foot

Foot and Ankle

- Foot and ankle deformities – as high as 92% in patients with CP (O’Connell, 1998)
- Need for correction in childhood otherwise worsens in adulthood
- Untreated cases Significant source of pain decline in function
- Most common foot deformities in CP include: Equinus, , Planovalgus, Equinovarus

Case: Bilateral foot osteotomy, foot/toe arthrodesis, multiple tendon lengthenings hip/thigh

- 15yo boy with spastic cerebral palsy
- Progressive, bilateral contracture deformity of his feet and ankles
- Deformity preventing proper bracing and interfering with his ability to stand.
- Skin threatened medially and over the bilateral dorsal bunions
Case: Bilateral foot osteotomy, foot/toe arthrodesis, multiple tendon lengthenings hip/thigh.

Pre-Op Post-Op

Foot and Ankle – Preventative Measures
- Current tools:
 - Botulinum toxin for spasticity
 - Casting
 - Orthotics
 - Physical therapy
- Do we have the right tools…? Are they sufficient…?

Surgical Treatment: Spine

B = Sitters (GMFCS III - V)
A = Ambulators (GMFCS I, II)
C = Bedridden (GMFCS IV, V)

- Rapid progression of scoliosis during growth period
- Continued progression after growth period. Ambulators who did not progress for years can still progress after age 20.
- Severe scoliosis (Cobb angle > 60) seen mostly in bedridden patients or those with total-body involvement

Natural History and Progression
- Ongoing progression with curves ≥ 30°
- With progression:
 1. Lose ambulation
 2. Decreased sitting endurance → repositioning more often
 3. Shorter trunk → decreased GI and respiratory function
 4. Pain

Surgical Decision Making Algorithm
- Observe patients every 6 months
- Consider surgery when curve is ≥ 35° → likely to progress
- Strong indication for surgery in progressive curves and curves ≥ 40° - 50°
Risk Factors that Influence Surgery

- Promoting surgery:
 - Age/Skeletal Maturity ➔ intervene earlier
 - Pelvic Obliquity > 15 degrees
 - High GMFCS (IV & V) ➔ more aggressive with patients with more severe symptoms
 - Goals of care = quality of life, ease of care

- Discouraging surgery:
 - Comorbidities ➔ infection, pulmonary issues, cardiac, neurological conditions, malnutrition

Growing Rod Constructs

- Allows continued growth in actively growing children with abnormal spinal curves
- Indications:
 - Skeletal immaturity
 - < 10 years old
 - Maintenance of seated height
 - Prevent progression of curve
 - Preserve pulmonary function and thoracic volume which can be impaired by early fusion

Surgery for Scoliosis in Cerebral Palsy

- In modern U.S medical practice, it is rare for severe scoliosis to progress into adulthood without surgical intervention
 - 84 patients/families of patients with CP treated with spinal fusion
 - Overall satisfaction = 92%
 - Improvements: 93% in sitting balance, 94% cosmesis, 71% quality of life
 - 85% would definitely have surgery again
 - 99% considered surgery successful
 - Measurement of Pain – Based on Medication use – No Difference

Goals and Outcomes

- Successful surgery makes positioning and sitting easier
 - Increases endurance and halts loss of ambulatory function
 - Gauge success with surrogate outcome measures ➔ burden of care perceived

Magnetically Controlled Growing Rods

- External magnetic distraction
 - Minimizes one of the main issues of growth rods – recurrent surgeries for distractions
 - Bess et al, 2010 – 140 patients with 897 traditional growing rod procedures
 - 58% at least 1 complication
 - Complication risk increased by 24% for each additional surgical procedure
 - Early results have been favorable, with reduced number of surgeries, and comparable curve correction

(Déjà vu) - Problem with Evaluating Pain and Associated Outcomes

- Important to assess pain symptoms AND health-related quality of life (HRQoL)
 - Impact of pain on patient function
- For studies related to pediatric patients with CP, we often rely too much on surrogate measures of pain (proxy, pain medications)
 - Need for validated and widely used tools
 - CPChild, PROMIS? – Still have their deficiencies
But wait! What About Prevention of Scoliosis?

Non-surgical Treatment

- Botox injections into concavity of curve
- Physical Therapy to retain flexibility and mobility
- In-chair positioning devices (GMFCS III – V)
- TLSO and soft/postural braces may delay surgery
- Bracing can improve function/ stability/ maintenance of body position in chair

Impact of Orthoses on the Rate of Scoliosis Progression in Children with Cerebral Palsy

- 43 patients with CP and scoliosis, with mean curve of 64° at time of spinal fusion
- 21 patients treated with orthoses (23 hr/day for mean 67 months)
- Braced patients had curve progression to 50° by 12.5 yrs, compared to 50° by 14 yrs without brace
- Spinal orthotics had no statistically significant effect on scoliosis curve, shape, or rate of progression
- Apical vertebral rotation = indicator of rapid progression curve

New Initiative at CUMC - Actuated Spine Brace

- Static braces shown to be ineffective for curve progression
- Potential of dynamic bracing

Actuated Spine Brace

A New Perspective

- Another direction is to look at what we are already doing
- What are we doing to help patients who are already suffering from pain?
 - Psychiatric Issues
 - The Opioid Epidemic
Psychiatric Issues in Pain
Weinberg Family Center Pain Research Platform

Cycle of Pain and Depression

Survey of 56 patients with CP
- Compare CP vs General Population:
 - Chronic Pain: 75% vs 39%
 - Fatigue Severity Scale: 8 vs 2.9
 - Depression Symptoms: 23% vs 12%
- Concurrent chronic pain and severe fatigue in 34%
- Concurrent chronic pain, severe fatigue, and depressive symptoms in 16%

Exploring Opioid Use in Chronic Pain
Weinberg Family Center Pain Research Platform

Phase 1 – Identify the Problem
1. Study to assess the prevalence of opioid and antidepressant use in patients with CP

Phase 2 – Chronic Pain – Opioid-Naïve
2A. RCT to determine effectiveness of duloxetine/pregabalin for chronic pain in CP – PCORI grant LD submitted
2B. Prospective study to assess suboxone for CP

Phase 3 – Chronic Pain – Opioid Dependent
3. RCT – Randomize patients to:
 - Control
 - Suboxone (depending on Phase 2)
 - Duloxetine/Pregabalin (depending on Phase 2)

Future Directions
- Sarcomere length found to be increased in CP, with smaller cross-sectional area in muscle contractures
- Muscle growth is potentially inhibited in longitudinal fibers growth by the pathology in CP
- Satellite cells – source of muscle growth and repair
 - Postulated that satellite cell loss causes inability for muscles in CP patients to grow due to dysfunction of contractures
 - Smith, 2013 (Dev Med Child Neurol.)

Future of Prevention?
- Better understanding of muscle pathology ⇒ potential for preventing musculoskeletal pain in CP
- Stem Cell Therapy and other Regenerative Medicine
 - Ability to induce satellite cell regeneration?
 - Regeneration of insults to central nervous system?

The future is in YOUR hands
Thank You!