Diagnostic approach to the ataxic child

Andrea Poretti, MD
Postdoctoral research fellow
Division of Pediatric Radiology
Johns Hopkins Hospital

Alec Hoon, MD
Associate Professor of Pediatrics
Johns Hopkins School of Medicine
Director, Phelps Center
Kennedy Krieger Institute

Hilary Gwynn, MD
Assistant Professor of Neurology
Johns Hopkins School of Medicine
Phelps Center
Kennedy Krieger Institute

AACPDM 67th Annual Meeting
Milwaukee, October 16-19, 2013

Take-Home Messages

- Ataxia: different systems and courses
- Cerebellar ataxia most prevalent in children
- History + examination: most important diagnostic tools
- Neuroimaging: key role in cerebellar ataxia
- Cerebellar dysfunction: motor + cognitive

Outline

- Cerebellum: embryology and anatomy
- Definition of ataxia and its clinical findings
- Examples of pediatric ataxia
- Ataxia Rating Scales
- Treatment

Cerebellar Development

- Very long: early embryonic period => first postnatal years
- Development of cerebellum and brain stem are closely linked
- Several genes involved => wide spectrum of malformations
- Protracted development => vulnerable to several developmental disorders
Cerebellar Development: Selective Vulnerability

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Cerebellar vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>In utero ischemic events including perinatal asphyxia or term</td>
<td>(-) 74.7</td>
</tr>
<tr>
<td>Perinatal infections</td>
<td>+ 71</td>
</tr>
<tr>
<td>Prematurity (≤ 30 weeks GA)</td>
<td>+ 65.4</td>
</tr>
<tr>
<td>Pre-natal infections</td>
<td>++ 51.5</td>
</tr>
<tr>
<td>In particular CMV</td>
<td>++++ 60</td>
</tr>
<tr>
<td>Premature hemorrhages</td>
<td>++++ 73</td>
</tr>
<tr>
<td>Toxicity/selected drugs</td>
<td>++++ 73</td>
</tr>
<tr>
<td>Metabolic disorders</td>
<td>++++ 73</td>
</tr>
<tr>
<td>CMV, cytomegalovirus; GA, gestational age.</td>
<td></td>
</tr>
</tbody>
</table>

Cerebellar Anatomy

Cerebellar Anatomy

Cerebellar ↔ Cerebral Connections

Krienen FM and Buckner RL. Cortex, 2009

Cerebellar ↔ Cerebral Connections

Volpe JJ, J Child Neurol, 2009
Ataxia

- Ataxia = lack of order
- Medicine = imbalance, incoordination
- Common problem in child neurology, but broad differential diagnosis = challenging

Ataxia: Classification

Affected system
- Cerebellar
- Sensory
- Vestibular
- Optic
- Epileptic pseudoataxia
- Functional/psychogenic

Course
- Acute
- Non-progressive
- Progressive
- Intermittent
- Episodic

Diagnostic Approach

1. History
2. Examination
3. Targeted additional investigations:
 - Laboratory
 - Neuroimaging
 - Genetic
4. Diagnosis

History

1. Basic (background) history
2. Neurological history:
 - Family history
 - Past medical history
 - Social history
 - Toxin exposure, medication
 - Patient’s perception of problem

History Issues

- Not easy to differentiate static ↔ slowly progressing:
 - Short-term observation
 - Clinical heterogeneity with variable course
- Some examples:
 - Cerebellar ataxia in CDG syndrome
 - Cerebellar ataxia in coenzyme Q10 deficiency
 - Marinesco-Sjögren syndrome

Examination

Neurological
- Test for cerebellar dysfunction
- Test for other system involvement:
 - Abnormal eye movements:
 - Nystagmus
 - Ocular motor apraxia
 - Polyneuropathy
 - Spasticity
 - Encephalopathy

General
- Involvement of other organs:
 - Eye: retina, cataract, optic nerve
 - Hearing
 - Skin
 - Organomegaly

Ataxia “pure” vs. Ataxia “plus”?
Cerebellar Motor Dysfunction

- Impaired coordination and motor control:
 - Stance
 - Gait
 - Limb
 - Speech
 - Swallowing
 - Eye movements

- Trunk Ataxia

Truncal Ataxia: Gait

- Cerebellar dysfunction:
 - Wide-based
 - Irregular rhythm, irregular steps
 - Truncal titubation
 - Unilateral lesion ⇒ stumble/fall towards affected side

- Influenced by additional abnormalities:
 - Proprioceptive loss
 - Visual impairment
 - Vestibular deficit
 - Spasticity

Truncal Ataxia

- Sitting:
 - Support needed

- Stance:
 - Broad based
 - Tandem position, standing on one leg

- Romberg test: Ask patient to
 1. Stand
 2. Close eyes

 ⇒ Negative (normal) = no change
 ⇒ Positive = loss of position sense ≠ cerebellar disease

Limb Ataxia

- Dysemetria: incoordination of a limb while performing a task
- Intention tremor: amplitude ↑ as an extremity approaches the endpoint
- Dysdiadochokinesia: incoordination while performing alternating movements

Limb ataxia

- Finger-nose-test: simple, boring
- Examination should be “fun”, include activities of daily life:
 - Drawing, writing, peg-board, games, ….
Limb Ataxia

- Archimedes spiral
- Ladder

Speech

- Dysarthria = scanning speech
- Poorly modulated rate, rhythm and force

Nystagmus

- Involuntary eye movement alternating a slow and a fast component in two directions

Nystagmus

- Horizontal nystagmus => unilateral lesion:
 - Slow and coarse looking towards lesion
 - Faster and finer looking away from lesion
- Vertical nystagmus => central (brain stem/cerebellar lesion)
 - Downbeat: craniocervical junction, toxic
 - Upbeat: MS, ischemic, degenerative
Nystagmus

- Congenital or acquired impairment of voluntary horizontal saccades
- Compensatory jerky head movements to enable fixation
- Congenital: Joubert, Cogan disease
- Acquired: Ataxia telenagiectasia, AOA1, AOA2

Ocular Motor Apraxia

- Rapid
- Involuntary
- Multivectorial (horizontal + vertical)
- Chaotic/unpredictable
- Conjugate
- Opsoclonus-myoclonus syndrome (DD of acute ataxia)
Cognitive Function + Behavior

The cerebellar cognitive affective syndrome

Jeremy D. Schmahmann and Jean C. Sherman

Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA

Correspondence to: Jeremy D. Schmahmann, MD
Department of Neurology, Massachusetts General Hospital,
FMR 1.K, Fourth Street, Boston, MA 02114.

Cerebellar Cognitive Affective Syndrome

- Executive function
- Spatial cognition
- Language deficits
- Personality change

Schmahmann JD and Sherman JC, Brain, 1998

Dysmetria of Thought Hypothesis

- Motor system = Ataxia
- Thought and Emotion = Cerebellar cognitive affective syndrome
 - Cerebellum regulates speed, capacity, consistency and appropriateness of mental and cognitive processes

Dysmetria of Thought Hypothesis: Topography Anterior - Posterior

- Sensorimotor:
 - Predominantly anterior lobe (I – V)
- Cognitive, affective:
 - Predominantly neocerebellum (vermal + hemispheric components of VI + VII)

Dysmetria of Thought Hypothesis: Topography Medial - Lateral

- Vermis and fastigial nucleus:
 - Autonomic regulation, affect, emotionally important memory
- Cerebellar hemispheres and dentate nucleus:
 - Executive, visual-spatial, linguistic, learning and memory

Cerebellar Cognitive Affective Syndrome

- Based on observations in adults with:
 - Cerebellar stroke
 - Cerebellitis
 - Low-grade cerebellar tumors
- Concept extended to children:
 - Low-grade cerebellar tumors
 - Cerebellitis
 - Congenital non-progressive ataxia
 - Cerebellar malformations
 - Cerebellar disruptions

Schmahmann JD, Neuropsychol Rev, 2010
Cerebellar Ataxia

- Acute
- Progressive
- Non-progressive

Progressive Cerebellar Ataxia

- Long list of rare diseases
- Heterogeneous group (clinical, genetic)
- Focused diagnostic work-up
- Only few are treatable
- 40-50% without specific diagnosis
- Dominantly inherited spinocerebellar ataxias (SCA) = rare in childhood

Friedreich Ataxia

- Autosomal recessive
- Involved organs: CNS, myocardium, pancreas
- Presentation: “clumsiness”, ataxia
- Pes cavus and scoliosis = late signs
- Areflexia: already present in preclinical stage
- MRI: normal cerebellum, cervical cord atrophy
- DD: Charcot-Marie-Tooth polyneuropathy

Non-Progressive Cerebellar Ataxia

- Non-progressive “congenital” ataxia
- Cerebellar malformations:
 - Joubert syndrome, rhombencephalosynapsis, Dandy-Walker malformation
- Cerebellar disruptions:
 - Unilateral cerebellar hypoplasia, cerebellar disruption in preterm neonates

Non-Progressive “Congenital” Ataxia (NPCA)

- “Congenital” = early evidence of cerebellar ataxia, not really congenital
- No reliable data about prevalence, but more common than any defined cerebellar malformation
NPCA: Early Presentation

- Hypotonia (no weakness, normal reflexes)
- Delayed motor + language milestones
- Ataxia: not congenital, in the first year of life
- DD:
 - Variant (bottom shuffler)
 - Neuromuscular disorder
 - Syndromic (e.g. neurofibromatosis type 1)
 - Developmental delay

NPCA in Toddlers

- Situation dominated by impaired motor performance:
 - Slow, careful; avoidance of difficult tasks
 - Balance problems more evident on soft ground, changing gait direction, gait initiation/acceleration
- With age:
 - Impaired coordination more obvious
 - Delay in language milestones
 - Concerns about cognitive abilities

NPCA: Long-Term Problems

- Ataxia tends to improve
- Major limitation = intellectual disability
- Increased prevalence of seizures
- Some patients: spastic-dystonic component

NPCA: Neuroimaging Spectrum

1. Normal: most prevalent
2. Cerebellar hypoplasia
3. Mimicking cerebellar atrophy

=> Intrafamilial variability observed
=> No correlation imaging - clinical - outcome

Hypoplasia ⇔ Atrophy

Hypoplasia
- Decreased size/volume of cerebellum
- Not filling normally configured post fossa or small posterior fossa
- But: increased interfoliar spaces possible
- No evidence of progression

Atrophy
- Dilated interfoliar spaces
- Evolving, progressive
- Normal size of posterior fossa

NPCA: Neuroimaging Spectrum

Normal MRI in girl with NPCA, 2 sisters similarly affected
Cerebellar hypoplasia in boy with NPCA
Child with "static" cerebellar ataxia over years MRT: Dilated interfoliar spaces mimicking atrophy.
NPCA: Genetics

- Autosomal recessive inheritance:
 - Many familial observations
 - Some gene loci/genes (e.g. VLDLR, CA8, ZNF592, WDR81) identified in isolated NPCA or NPCA “plus” (e.g. deafness, optic atrophy, short stature)
- Few publications on families with dominant or X-linked inheritance, no genes identified

NPCA: Differential Diagnosis

- Cerebellar malformations
- Metabolic disorders: L2HGA, GA1, CDG, Glut1 deficiency, CoQ10 deficiency
- Posterior fossa midline tumor
- Infantile onset progressive ataxias: AT, GM2, INAD
- Cogan ocular motor apraxia
- Hereditary sensory neuropathies

NPCA: Diagnostic Approach

1. Brain MRI
2. α-Fetoprotein (to exclude AT)
3. Metabolic:
 - Organic acids (GA1, L2HGA)
 - Transferrin electrophoresis (CDG)
4. Genetic testing

Joubert syndrome (JS): Epidemiology

- Estimated prevalence ~ 1:80’000
- Probably underestimated
- Male ≥ female
 - Autosomal recessive with exception of rare cases following X-linked recessive
- Reported in almost all countries

JS: Neurology

- Neonatal breathing dysregulation: common
- Muscular hypotonia: always
- Ocular motor apraxia: very common
- Ataxia: always
- Intellectual disability: almost always

JS: Cognitive Function

- Normal cognitive function => very rare
- Intellectual disability, variable degree
- Prominent impairment in visuo-spatial organization, executive functions and expressive language
- Marked intrafamilial variability

Steinlin M et al, Neuropediatrics, 1997; Poretti A et al, Neuropediatrics, 2009
JS: Behavior

- No systematic studies, mostly based on observations and reports by parents
- Variability, spectrum
- Sensitivity to noise
- Usually “easy” to handle, happy child
- Minority with behavioral difficulties (hyperactivity, aggression, self-injury)

JS: Systemic Involvement

- Eyes:
 - Retinal dystrophy (~30%)
 - Colobomas (~19%)
- Kidneys:
 - Nephronophthisis (~25%)
- Liver:
 - Congenital hepatic fibrosis (~15%)
- Other:
 - Polydactyly (~20%)

Molar Tooth Sign (MTS)

MTS = diagnostic criterion

JS: Neuroimaging

- Beyond MTS and vermian hypoplasia
- Spectrum of additional posterior fossa and supratentorial findings
- Supratentorial findings common
- No neuroimaging-genotype correlation
- Intrafamilial variability
JS: Genetics

- All JS-genes encode for proteins of the primary cilium/centrosome => Ciliopathy
- 21 genes account for ~ 50% of patients
- Marked genetic heterogeneity
- Weak genotype-phenotype correlation

JS: Primary Cilia

- Key role in development and function of:
 - Retinal photoreceptors, neurons, kidney tubules, bile ducts
- In developing cerebellum and brainstem:
 - Are implicated in neuronal cell proliferation and axonal migration

Disruptive Development of the Cerebellum

- Cerebellar underdevelopment without direct injury of the cerebellum
- Probably most frequent type of cerebellar abnormality in preterms
- Mean gestational age: 26-28 weeks

Disruptive Development of the Cerebellum: Neuroimaging

- Symmetric volume reduction of the cerebellar hemispheres
- Small vermis with preserved shape
- Small brain stem with flattened anterior curvature of the pons
Disruptive Development of the Cerebellum: Pathomechanisms

- **Direct effects on cerebellum:**
 - Hemosiderin (blood products)
 - Infection-inflammation
 - Hypoxia-ischemia
 - Glucocorticoids
 - Undernutrition

- **Remote effects on cerebellum (impaired trans-synaptic trophic effects)**

Blood Products

- Infratentorial hemosiderin in preterms without cerebellar injuries, but supratentorial hemorrhages
- Continuous decline of cerebellar volume over several weeks without any typical vascular injury pattern

Glucocorticoids Exposure

Postnatal exposure to clinically routine doses of hydrocortisone or dexamethasone => impaired cerebellar, but not cerebral growth

Remote Effects

- Transsynaptic cerebro-cerebellar diaschisis involving neuronal connections between cerebrum and cerebellum
- Diaschisis = reduction of function of a part of the brain following the interruption of an afferent pathway at a remote site
- Association with supratentorial unilateral or bilateral injuries

Motor + Cognitive Functions + Behavior

- Motor disturbances:
 - Ataxia to mixed CP: ~ 50%

- Cognitive deficits:
 - Deficits in visual-spatial abilities, verbal fluency, reading, memory, learning: ~ 40%
 - Attentional deficits

- Behavioral deficits:
 - Socialization deficits
 - Autistic behavior: ~ 40%
Sensory Ataxia

- Less common than cerebellar ataxia
- Loss of sensory afferents (proprioceptive) = worse with eyes closed => positive Romberg test
- Areflexia or decreased reflexes

Vestibular Ataxia

- Injury of the peripheral vestibular system => nystagmus suppressed by visual fixation
- Examination with Frenzel’s goggles:
 - No visual fixation => Visually depressed nystagmus more obvious

Bilateral Vestibular Dysfunction

- Stance + gait unsteadiness, darkness and on uneven ground ↑
- Usually NO vertigo
- Examination:
 - Head impulse test bilaterally abnormal
 - Romberg positive
- Causes:
 - Toxic (gentamycin vestibulotoxicity)
 - Meningitis
 - Bilateral vestibular schwannoma (NF2)
Functional Ataxia

- Usually easy to recognize
- Inconsistent “performance”
- Abasia, astasia
- Good achievements despite “greatest difficulties”
- Often better if “distracted” = engaged with additional task (e.g. balancing + calculating)
- If dissociate disorder assumed => restraint with additional investigations

Ataxia Rating Scales

- Limited value in daily work
- Important for:
 - Natural history documentation
 - Interventional (therapeutic) studies
- Problems:
 - Time-consuming
 - Training for assessment needed
 - Limited validation in pediatric age group

Ataxia Rating Scales

- Brief Ataxia Rating Scale (BARS): 30-point total / 5 “items”
- Scale for the Assessment and Rating of Ataxia (SARA): 40-point total / 8 “items”
- International Comparative Ataxia Rating Scale (ICARS): 100-point total / 19 “items”
- Modified ICARS (MICARS): 120-point total / 16 “items”

Ataxia Rating Scales in children

- Not yet sufficiently studied in children
- Effect of gender and age (below 10 years of age)
- BARS least reliable
- SARA and ICARS reliable, applicable > 6 years

Sival DA and Bunt SR, Dev Med Child Neurol., 2009; Sival DA et al, Dev Med Child Neurol., 2011

Treatment

- Opsoclonus-myoclonus syndrome = immunomodulatory therapy
 - Should be started as soon as possible after onset of symptoms, don’t wait for surgery
 - No standard protocol
 - Most common: Prednisolone 1-2 mg/kg/d for weeks-months until symptoms improvement

Treatment

➢ Can rehabilitation help?
➢ No data for children, scarce data for adults
➢ Adults with progressive cerebellar ataxia => coordination training focused on balance + walking => improvement after 12 weeks = individuals with cerebellar damage can learn to improve their movements
➢ Transcranial magnetic stimulation?
➢ Deep brain stimulation?

Take-Home Messages

➢ Ataxia: different systems and courses
➢ Cerebellar ataxia most prevalent in children
➢ History + examination: most important diagnostic tools
➢ Neuroimaging: key role in cerebellar ataxia
➢ Cerebellar dysfunction: motor + cognitive

Ilg W et al, Neurology, 2009; Groiss SJ and Ugawa Y, Cerebellum, 2012