Article

Adaptive Sport/Recreation Categories:
- Sports/physical activity performance,
- Exercise prescription.

Research Questions
- Does cardiorespiratory endurance increase with training in individuals with CP?
- Does skeletal muscle thickness increase with RaceRunning training?
- Is the passive range of motion of the hip, knee and ankle affected by RaceRunning training?

Methodology
- Fifteen adolescents/young adults (range 9–29 years) with cerebral palsy completed 2 sessions per week for 12 weeks of RaceRunning training in a community setting in Sweden. RaceRunning involves a specific 3 wheeled device with a saddle and chest support to promote high intensity exercise in individuals with limited ambulation capability.
- Measurements were collected pre and post intervention and included:
 - cardiovascular endurance reflected by 6-min RaceRunning test (6-MRT), average and maximum heart rate, rate of perceived exertion using the Borg scale (Borg-RPE) for cardiorespiratory endurance.
 - skeletal muscle thickness through ultrasound of vastus lateralis, vastus intermedius and medial gastrocnemius muscle of the more-affected leg for skeletal muscle thickness.
 - hip, knee and ankle passive range of motion.

Results
- After 12 weeks of RaceRunning training results were:
 - All participants increased running distance on average 34% following training (6-MRT distance; pre 576 ± 320m vs. post 723 ± 368 m, p < 0.001) and increased mean top speed by an average of 21%. No other cardiovascular changes occurred.
 - The thickness of the medial gastrocnemius muscle on the more-affected leg increased by 9% in response to training (p < 0.05) but no significant change occurred in other muscles.
 - Passive hip flexion increased (p < 0.05) on the less-affected side and ankle dorsiflexion decreased (p < 0.05) on the more-affected side after 12 weeks of RaceRunning training.

Discussion/Conclusion
- Positive cardiorespiratory gains occurred following RaceRunning training twice a week.
- Unexpected skeletal muscle gains following endurance training may be due to low activity level starting point of participants and trainable skeletal muscle properties of muscle in cerebral palsy.
• Range of motion findings may not be clinically significant.
• Overall, results support the efficacy of RaceRunning as a training modality for young people with cerebral palsy GMFCS I-IV in promoting cardiorespiratory and peripheral adaptations.

Article Strengths
• Involved adolescents and young adults with GMFCS level I-IV – both age and GMFCS range are seldom studied.
• Participants recruited were all interested and motivated to RaceRun and all had experience in RaceRunning previously (between 3 months to 3 years) but none in structured programme.
• All participants were able to work at moderate intensity and achieved high training zone heart rates.

Article Weaknesses
• Small heterogeneous sample size.
• Assessors not blinded for any outcome measures but were consistent.
• Training was not individualised or based on participant goals.
• Improved skeletal muscle size does not indicate improved strength or function, neither of which were tested.
• No follow up data beyond the intervention.
• Measures focused at body structure and function level. No measures of changes in participation, ADLs, or quality of life therefore unsure of functional, everyday benefits.
• No training adverse events noted.

Take Home Messages
• RaceRunning may provide an opportunity for young people with cerebral palsy GMFCS I-IV to improve cardiorespiratory endurance and skeletal muscle size.
• However, the carryover to functional tasks, participation, or quality of life is unknown and requires additional research.