Simultaneous isometric torque measurement at multiple joints in the lower extremities of children and adults

Theresa Sukal Moulton, DPT, PT, PhD, Natalia Sanchez, PhD, Julius PA Dewald, PT, PhD

Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL; University of Southern California, Los Angeles, CA.

Background

- Clinical signs of reduced strength and loss of independent joint control in the lower extremities of those with cerebral palsy (CP), related to damage of the corticospinal tracts
 - Clinical measurements, such as observational tests and hand held dynamometry, can be challenging to appropriately administer, particularly when atypical patterns of movement prevent patients from isolating effort to a single joint
 - The most functionally relevant position is standing, but balance challenges make independent standing impossible for many patients.

Clinical Relevance

- Findings in children with typical development (TD) may reflect a flexible nervous system with multiple strategies to generate maximal efforts at a given joint.
- Less variability may indicate limited neural resources leading to stereotyped motor commands with narrow flexibility, as might be expected in children with CP or other neurological diagnoses.
- The ability to fully characterize the output of the neuromuscular system allows for more mechanistic investigations to further understand the source and nature of atypical motor output in CP.

Acknowledgements and References

- Research was supported, in part, by the National Institutes of Health’s National Center for Advancing Translational Sciences, Grant Number UL1TR001422. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Device description

- A custom isometric device was designed and used to study the lower extremity joint torque coupling patterns and abilities in adults following a stroke (see Sanchez et al. 2017 for results).
- Two 6 degrees-of-freedom load cells give the ability to simultaneously measure efforts at the hip, knee and ankle.
- This can be accomplished in an upright posture while removing the need to balance or support one’s self by supporting the pelvis and trunk in a way that does not allow for compensations.
- Changes made to original device for use with children: Offset added to the thigh load cell (‘b’ in Figure 1), cuff insert made to accommodate smaller diameter legs
 - Trunk support adapted for smaller torsos
 - Foot plates made in smaller sizes for additional options
 - Pediatric friendly data collection protocol

Figure 1. Device schematic

Figure 2. Pediatric participant