The Role of Gait Analysis in Patients with Charcot-Marie-Tooth Disease

Kristan Pierz, MD and Sylvia Õunpuu, MSc
Center for Motion Analysis
Division of Orthopaedics
Connecticut Children’s Medical Center
Farmington, Connecticut, USA

Overview

• Utility of Gait Analysis
• Ankle motion – the basics
• CMT ankle
 – Gait characteristics (video, kinematics, kinetics)
 – Case studies based on CMT ankle subtypes
• Discussion

Sources

• Literature
• Our experience of examining 68 patients with CMT with comprehensive motion analysis
• Current study of orthopaedic outcomes (no treatment control group)
• Õunpuu et al., Gait and Posture, 2013.

Charcot-Marie-Tooth (CMT)
(Hereditary Sensory and Motor Neuropathy)

• Most commonly inherited neurological disorder = de-myelination of large peripheral nerves
 • Myelin & axonal subtypes
• Characterized by:
 • distal muscle weakness and imbalance
 • foot and ankle deformities
 • associated gait implications
 • impairment progression at varying rates

Textbook Gait Description

• Foot drop (excessive equinus) in swing
• Steppage (hyper-flexion of knee and hip in swing)
• Circumduction and pelvic hiking in swing

Textbook Clinical Description

• Forefoot equinus and adductus
• Hindfoot varus
• Pes cavus
• Toe deformities – claw toes

(Graystrom, Foot and Ankle 2000)
• Clinical experience:
 – Persons with CMT do not all have the same clinical presentation (impairments)
 – Therefore, there are a variety of gait patterns and deformity…

Background
• The optimal treatment of gait pathology requires a detailed understanding of the pathomechanics during gait
• Visual assessment is limited in providing a full understanding of movement pathology
 – It is just too complicated!

Gait Analysis Is…
• The systematic and objective documentation of gait function in terms of the following:
 – Joint angles (joint kinematics) in 3D
 – Joint moments and powers (joint kinetics) in 3D
 – Muscle activity
• Includes integration of gait analysis data with the impairments such as:
 – Weakness
 – Limited range of motion
 – Bony deformity

The First Step
• Understand the gait analysis data.
 – Know your angle definitions and how they correlate with the clinical exam

Angle Definition – Ankle Sagittal Plane
• The relative angle between perpendicular to the long axis of the shank and the plantar aspect of the foot
• As viewed by an observer looking along an axis perpendicular to the shank-foot plane

Please note: the ankle joint angle definition includes multiple joints (ankle and foot)

Normal Ankle Sagittal Plane Motion

[Graph showing normal ankle plantar-dorsiflexion motion]

0 25 50 75 100 % Gait Cycle
-30 -20 -10 0 10 20 30
Plantar flexor weakness

Plantar flexor weakness

0 25 50 75 100 % Gait Cycle
-30 -20 -10 0 10 20 30
Ankle Plantar-Dorsiflexion

AACPDM 2016 - BRK 21 Treatment of CMT - Pierz/Öunpuu
• Peak ankle dorsiflexion in terminal stance = clinically relevant gait impact
• Three patterns present in CMT:
 – greater than typical
 – within typical range
 – less than typical
The Flail Foot – Compromised Prerequisites of Gait

• Stance phase stability
• Swing phase clearance
• Appropriate prepositioning at initial contact
• Adequate step lengths

Treatment Goals: Address these compromised prerequisites of gait

The Flail Foot

• Clinical Examination Findings
 – Limited passive dorsiflexion range of motion
 • Knee flexed (1 ± 7 degrees)
 • Knee extended (8 ± 7 degrees)
 – Full plantar flexion and forefoot inversion/eversion
 – Strength: (median/maximum/minimum)
 • Plantar Flexors (2/5/2)
 • Dorsiflexors (4/5/0)
 • Forefoot Invertors (5/5/0)
 • Forefoot Evertors (4/5/2)

Flail Foot

• Functional outcome of ankle weakness includes instability in standing and during gait due to limited ability to bear weight over the forefoot

The Flail Foot

• Gait Characteristics
 – Increased and delayed peak dorsiflexion in terminal stance
 – Increased equinus in swing and at initial contact
 – Reduced peak plantar flexor moment and power generation in terminal stance

The Flail Foot

• Treatment Options
 – Brace
 – Surgery to maintain a “braceable position” of foot and ankle if needed

Ankle-foot Orthoses (AFO’s)

• limit excessive dorsiflexion and allow weight bearing on the distal portion of the foot
• will provide more stability for the patient in standing and during gait
• limit excessive equinus and associated clearance problems in swing
Barefoot vs. Hinged AFO

- Reduced excessive plantar flexion in swing
- No change in peak ankle dorsiflexion timing in terminal stance
- No improvement in peak ankle plantar flexor moment in terminal stance

Barefoot vs. Solid AFO

- Reduced excessive plantar flexion in swing
- Reduced excessive dorsiflexion in terminal stance
- Associated reduced excessive knee flexion in stance

Flail Foot TX: Surgery may be needed if foot “unbraceable”

- Posteromedial release
 - Achilles Z lengthen
 - Posterior capsulotomies
 - Abductor Hallucis
 - FHL/FDL
 - TN capsulotomy
 - Plantar fascia release
- Closing cuboid osteotomy
 - (cuneiform too osteopenic to open)

Flail Foot TX: Pre vs. Post

The Cavo-varus Foot
The Cavovarus Foot

Compromised Prerequisites of Gait

- Stance phase stability
- Appropriate prepositioning at initial contact
- Pain

Treatment Goals: Position foot to improve stability and reduce pain

The Cavovarus Foot

Clinical Examination Findings

- Limited passive dorsiflexion range of motion
 - Knee flexed (2 ± 6 degrees)
 - Knee extended (9 ± 7 degrees)
- Full plantar flexion
- Variable forefoot inversion/eversion
- Strength: (median/maximum/minimum)
 - Plantar Flexors (4/5/2)
 - Dorsiflexors (5/5/4)
 - Forefoot Invertors (5/5/3)
 - Forefoot Evertors (5/5/3)

Clinical findings:

- Bilateral plantar flexor weakness (2/5)
- Bilateral claw toes
- Bilateral cavus
- Bilateral normal passive ROM

The Cavovarus Foot

Gait Characteristics

- Delayed peak dorsiflexion in terminal stance
- Reduced peak plantar flexor moment and power in terminal stance

Foot Pressures

- Increased lateral weight bearing
- Reduced toe contact

Cavovarus Foot Treatment Considerations

- Cavus: Imbalance between peroneus longus (plantarflexes 1st ray) & anterior tibialis (dorsiflexes 1st ray)
- Varus: Imbalance between posterior tibialis (inverts hindfoot) & peroneus brevis (everts hindfoot)
Cavovarus Treatment: Non Op

- Plantar fascia stretch
- Strengthening exercises: dorsiflexors & evertors
- Bracing

Barefoot vs. Solid AFO

- Reduced excessive peak dorsiflexion in terminal stance
- Reduced plantar flexion range of motion
- Maintained peak plantar flexor moment in terminal stance
- Reduced peak power generation in terminal stance

Cavovarus Treatment: Surgical

- Soft tissue release
 - Plantar fascia
- Soft tissue lengthening
 - Posterior tibialis
- Tendon transfers – to balance/delay recurrence
 - Peroneus longus to brevis
 - EHL to neck of 1st MT
 - Anterior tibialis laterally

Cavus Component – TX Note

- The implications of plantar fascia release on “available” plantar flexor length in combination with weakness need to be considered to prevent excessive peak dorsiflexion post treatment
- Consider peak dorsiflexion in terminal stance pre tx to predict outcome

Cavovarus Treatment: Surgical

- Osteotomy – if fixed
 - Dorsiflexing 1st ray osteotomy
 - Calcaneal osteotomy
 - Cuboid osteotomy
- Arthrodesis – if severe/reccurred

Foot Pressure Changes

- Pre
- Post
Treatment Outcomes Experience

- Through gait analysis we know that outcomes vary

Equinus Ankle and Cavo-varus Foot (toe walker)

The Toe Walker

Compromised Prerequisites of Gait

- Stance phase stability
- Appropriate prepositioning at initial contact
- Swing phase clearance

Treatment Goals: Plantar grade foot

The Toe Walker

- Clinical Examination Findings
 - Limited passive dorsiflexion range of motion
 - Knee flexed (-2 ± 9 degrees)
 - Knee extended (-2 ± 13 degrees)
 - Full plantar flexion and forefoot inversion/eversion
 - Strength: (median/maximum/minimum)
 - Plantar flexors (5/5/2)
 - Dorsiflexors (5/5/2)
 - Forefoot invertors (5/5/3)
 - Forefoot evertors (5/5/4)

The Toe Walker

- Gait Characteristics
 - Increased equinus in stance and wing
 - Absence of dorsiflexor moment in loading
 - Reduced power generation in terminal stance

The Toe Walker

- Treatment Options
 - Leave alone – increased body weight and weakness
 - Stretching casts/night bracing/day bracing
 - Soft tissue: plantar fascia vs. plantar flexor
 - Dorsiflexing osteotomy
 - Clinicians must consider implications of
 - reducing plantar flexor contracture by lengthening a weak muscle which is likely to weaken more over time
 - reducing cavus deformity with implications on “available” plantar flexor length

AACPDM 2016 - BRK 21 Treatment of CMT - Pierz/Öunpuu 8
Tx Outcomes

• Bilateral plantar fascia release
• Relaxed standing

Pre vs. Post

Pre Surgery - 2000
Post Surgery - 2014

Gait Findings – Pre vs. Post

• Increased dorsiflexion in stance and swing
• Addition of dorsiflexor moment in loading response
• Maintained power generation terminal stance

Summary

• Determine prerequisites of typical gait that are compromised
• Describe clinical and radiographic findings and associated gait issues
• Define treatment options with clear indications and outcome hypotheses
• Current Options:
 – Therapies
 – Bracing
 – Surgical Intervention

Principles

• Consider treatment when pre-requisites of gait are compromised
• Provide support when strength/stability issues are present
• Correct anatomical deformity to improve biomechanical function
• Progressive pathology – document progression objectively using motion analysis to provide basis for treatment

Thank You