Evidence For Clinical and Research Walking Activity Measurement in Cerebral Palsy with the StepWatch (SW)

Kristie F. Bjornson, PT, PhD, MS
Associate Professor Pediatrics
Seattle Children’s Research Institute
University of Washington
Kristie.bjornson@seattlechildrens.org
AACPDM 2018

FINANCIAL DISCLOSURE
AACPDM 72nd Annual Meeting
October 9-13, 2018

Speaker Name: Kristie Bjornson, PT, PhD, MS

1. Disclosure of Relevant Financial Relationships
Grant/Research support from:
F31NS48740-NINDS
SCH Dept of Orthopedic Surgery
SCRI Academic Enrichment Fund
K23HD060764 - NICHD
R21 HD077186- NICHD/NCMRR

2. Disclosure of Off-Label and/or investigative uses:
I will not discuss off label use and/or investigational use in my presentation.

Objectives:
- Understand validity & accuracy of the SW strides taken in typically developing children/youth (TDCY) & with CP.
- Understand the walking activity levels and intensity of TDCY & with CP.
- Examine evidence for SW monitoring duration by Gross Motor Function Level (GMFCS) in children/youth with CP.
- Exemplars- clinical & research SW application in children with CP.
Physical Activity

Walking Activity

When we are not looking... how and how much are they walking?

Terminology:

- **Walking Activity (WA)** – step or stride taken for mobility, depending on device may be "step" or stride
 - **Step** - counts both left and right steps
 - **Stride** – step of one leg/side-3DG lab
Relationship of Stride Activity to Mobility-based Life Habits in Children with Cerebral Palsy (Bjornson, 2013)

- Average total strides/day was positively associated with the Personal Care, Housing, Mobility, and Recreation Life-H categories.

- Moderate/High walking stride rates (Ave > 30 stride/min/day) was associated with all categories

- Walking activity performance is significantly associated with levels of participation in mobility-based life habits for ambulatory children with CP.
Why the StepWatch?

ActiGraph: child with Spastic Diplegia

Stott, Mackey, 2011

StepWatch was the Most Accurate in Real World Walking

Pediatric StepWatch Accuracy/Precision & comparison to Pedometers:

- Mitre et al (2009) - treadmill trial
 - Lean and obese children
 - Omron and Digiwalker pedometers undercounting compared to manual counts (worse at slower speeds)
 - StepWatch had negligible error to manual counts of steps taken

StepWatch Accuracy to Observed Strides: TDY

- 20 normally developing children
- Age groups
 - 5-7 years & 9-11 years
- 3 - Two week intervals: 2 months apart
- Comparison manual counts
 - Walking 96-97%
 - Running 99%

Song K. J Peds Ortho, 26: 245-249;2006
StepWatch
- Two dimensional accelerometer
- Detects foot leaving the surface
- Completely sealed
- Worn with strap or ankle cuff
- Continuously records steps/time interval
- Up to two months duration
- AKA "SAM", "StepWatch3" and "GAM"
- www.modushealth.com

NEW UPDATE 2018
StepWatch 4 (SW4)-Activity Monitor
- $400 ea with iPad app
- App $1300 1x
- Additional $ monthly cloud-based
- rechargeable
- SW4 available 2018

support@modushealth.com

Seattle Clinical/Research SW Monitoring Guidelines
- Individually Set:
 - Sensitivity
 - Cadence
- Pre/Post intervention
- Wearing 7 to 14 days
- Analyze 5 to 14 days
- Depends on clinical question
StepWatch: How many days monitored

- TDY (n= 428, ages 2- 13 yrs) (Kang 2014)
 - Need to monitor ave 4.14 days
 - (range 3 to 6 by days 2 year age bands)

- Children with CP: (n=209) (Ishikawa, 2013)
 - GMFCS:
 - Level I 6 days
 - Level II 5 days
 - Level III 4 days

Kang et al Phys Meas. 2014
Ishikawa et al APRM. 2013

What do we know about walking with SW in TDY?

Measurement of Walking Activity throughout Childhood:
Influence of Leg Length
Bjornson et al, Ped Ex Sci 2010
Sample:

- 428 TDY children
- ages 2 to 15 years
- 30 boys / 30 girls per age group
- 7 groups of 2 year increments
- Calibration Accuracy: ave 100%
 - (range 90-112, sd 4.0)

<table>
<thead>
<tr>
<th>Age Group (yrs)</th>
<th>Gender (n)</th>
<th>Average Stride/Day</th>
<th>60-min peak</th>
<th>20-min peak</th>
<th>1-min peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>Boys (30)</td>
<td>8,159 (2,677)</td>
<td>28 (8)</td>
<td>40 (8)</td>
<td>70 (7)</td>
</tr>
<tr>
<td></td>
<td>Girls (30)</td>
<td>7,837 (1,771)</td>
<td>28 (5)</td>
<td>39 (7)</td>
<td>73 (10)</td>
</tr>
<tr>
<td></td>
<td>Total (60)</td>
<td>7,998 (2,257)</td>
<td>28 (7)</td>
<td>39 (8)</td>
<td>72 (7)</td>
</tr>
<tr>
<td>4-5</td>
<td>Boys (31)</td>
<td>9,411 (3,214)</td>
<td>30 (8)</td>
<td>44 (10)</td>
<td>71 (6)</td>
</tr>
<tr>
<td></td>
<td>Girls (31)</td>
<td>8,726 (1,992)</td>
<td>29 (6)</td>
<td>41 (8)</td>
<td>71 (7)</td>
</tr>
<tr>
<td></td>
<td>Total (62)</td>
<td>9,069 (2,674)</td>
<td>29 (7)</td>
<td>42 (9)</td>
<td>71 (7)</td>
</tr>
<tr>
<td>6-7</td>
<td>Boys (32)</td>
<td>9,880 (3,067)</td>
<td>31 (7)</td>
<td>43 (7)</td>
<td>70 (7)</td>
</tr>
<tr>
<td></td>
<td>Girls (30)</td>
<td>9,083 (2,492)</td>
<td>29 (5)</td>
<td>42 (6)</td>
<td>70 (6)</td>
</tr>
<tr>
<td></td>
<td>Total (62)</td>
<td>9,764 (2,510)</td>
<td>30 (6)</td>
<td>43 (6)</td>
<td>70 (7)</td>
</tr>
</tbody>
</table>
Basis for Pediatric Walking Intensity
Cut-points for StepWatch (SW)

- Intense walking adult US population documented peak step/min rate of 101 (Tudor-Locke, 2012)
- Intense walking bursts for children (< 18 years of age) are documented at 108 to 146 peak steps/min rates (10-12). (Barreira, 2012; Bjornson 2010; Tudorlocke, 2002)
- Moderate to vigorous physical activity (MVPA) = 120 step/min -10 to 14 y/o boys and girls with another pedometer (Graser, 2011)
- "High" intensity walking for StepWatch > 60 stride/min- as it counts only one leg.
Walking activity with StepWatch in children with CP?

Neuromuscular Scoliosis (VEPTR) TDY
Ambulatory Physical Activity Performance in Youth with Cerebral Palsy & Youth Developing Typically

<table>
<thead>
<tr>
<th></th>
<th>CP (n=81)</th>
<th>TDY (n=30)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average step/day</td>
<td>4,222</td>
<td>6,739</td>
<td>.000</td>
</tr>
<tr>
<td>% All Time Active</td>
<td>40.2</td>
<td>49.6</td>
<td>.000</td>
</tr>
<tr>
<td>Ratio Medium to low Activity</td>
<td>.33</td>
<td>.47</td>
<td>.000</td>
</tr>
<tr>
<td>% Time High Activity</td>
<td>5.6</td>
<td>9.7</td>
<td>.000</td>
</tr>
</tbody>
</table>

Activity Capacity Functional Categories

- **TDY to levels I, II & III p <.001, TDY to level I p=.04, Level I to II p<.001, Levels I & II p=.001, Level II to III p<.001**

Walking activity patterns in youth with cerebral palsy and youth developing typically

- Compared walking with StepWatch
- 5 days of monitoring
- 209 youth with CP
- 368 TDY
- Ages 2-13 years

Intensity:

- Low: 1-30 stride/min
- Moderate: 31-60 stride/min
- High: >60 stride/min
Walking activity patterns in youth with cerebral palsy and developing typically

Low (1-30) Mod (31-60) High > 60

TDY GMFCS level I GMFCS level II GMFCS III

Low (1-30) Mod (31-60) High > 60

TDY GMFCS level I GMFCS level II GMFCS III

Low (1-30) Mod (31-60) High > 60

TDY GMFCS level I GMFCS level II GMFCS III
Clinical/Research Exemplars: StepWatch Measurement:
- Longitudinal monitoring-
 * Scoliosis
 * Diplegia (multiple interventions)
- Treadmill training
- Orthotics
- SW combined with GPS-community mobility

Neuromuscular Scoliosis (VEPTR): Average Steps/Day
Average steps/day:
CP Spastic diplegia 8 y/o -GMFCS II

Walking intensity: CP-GMFCS II

Short-burst interval treadmill training walking capacity & performance in cerebral palsy: a pilot study

Bjornson, et al Dev Neurorehab 2018
Funding:
R21HD077186- NICHD/NICMR
Average Strides/day at baseline, post SBLTT and 6 weeks post SBLTT (n=12).

<table>
<thead>
<tr>
<th>Walking Performance</th>
<th>BL Mean (SD)</th>
<th>Post 1 Mean change</th>
<th>p value</th>
<th>Post 2 Mean change</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Total Steps/day</td>
<td>2677 (1060)</td>
<td>+1712 <.001</td>
<td></td>
<td>+948 <.00</td>
<td></td>
</tr>
<tr>
<td>Percent Time walking</td>
<td>37.1 (9.5)</td>
<td>+7.68 .006</td>
<td></td>
<td>+4.89 .55</td>
<td></td>
</tr>
<tr>
<td>Percent Time > 30 steps/min (Mod/High)</td>
<td>8.37 (4.0)</td>
<td>+4.4 .04</td>
<td></td>
<td>+3.8 .04</td>
<td></td>
</tr>
<tr>
<td># Step > 30 steps/min</td>
<td>8245 (442)</td>
<td>+991 <.001</td>
<td></td>
<td>+627 <.00</td>
<td></td>
</tr>
<tr>
<td>Peak Activity Index (ave top 30 one min)</td>
<td>33.9 (5.4)</td>
<td>+9.4 <.001</td>
<td></td>
<td>+6.1 <.00</td>
<td></td>
</tr>
<tr>
<td>Max # steps 60 mins</td>
<td>13.2 (4.2)</td>
<td>+5.8 .006</td>
<td></td>
<td>+4.2 <.00</td>
<td></td>
</tr>
<tr>
<td>Max # steps 20 mins</td>
<td>22.9 (4.3)</td>
<td>+7.3 <.001</td>
<td></td>
<td>+7.1 <.00</td>
<td></td>
</tr>
</tbody>
</table>
Orthotic Intervention: Walking Activity with StepWatch

SW Orthotics: n= 8 diplegia

Average # of Strides/day- low, mod & high

Fig. 4. Average strides/day current AFO versus AFO-FC.

4 y/o, spastic diplegia CP:
Average # of Strides/day- low, mod & high
4 y/o, spastic diplegia CP: Average # of Strides/day- low, mod & high

TDY (n=62, 4-5 y/o)

4 y/o, AFO- OFF

4 y/o, AFO- ON

What are they really doing?
Community Walking Activity in Cerebral Palsy: StepWatch & Global Positioning System (GPS)

Funding:
SCRI CHBD Stimulus Fund 2013
NIH R21 HD077186
Stride count intensity home/community (low, med, high), pre/post Interval Treadmill training (n=1)

Percent walking time-home/community, pre/post Interval Treadmill Training (n=12)
StepWatch - Take Home

- Highest accuracy to strides taken of current devices
- Published normative data for TDCY
- Emerging data for children with CP
- Evidence- Monitoring duration
 - GMFCS level
 - I = 6 days; II = 5 days; III = 4 days
- Pediatric cut points for intensity analysis

Potential SW Clinical/Research Applications

- **PRE/POST**
 - New assistive device/orthotics
 - Botox L/E/serial casting
 - Ortho surgery- SEML and Spinal
 - SDR
 - Oral medication movement disorders
 - Dose change of ITB pump
 - Burst of therapy (OT/PT)

QUESTIONS ?
References:

