Respiratory, laryngeal and articulatory behaviors during speech and non-speech tasks in children with cerebral palsy: New evidence of function from cutting edge research methodologies

Carol A. Boliek,1 Ignatius S. B. Nip,2 and Cynthia M. Fox3

1Department of Speech Pathology and Audiology, University of Alberta, Edmonton, Alberta, 2School of Speech, Language and Hearing Sciences, San Diego State University, 3National Center for Voice and Speech, Denver, CO

Overall Objectives

To report current findings related to respiratory, laryngeal and articulatory function for speech and non-speech tasks, derived from methodology to quantify chest wall kinematics, laryngeal impedance, and orofacial kinematics in children with dysarthria secondary to cerebral palsy (CP).

Study A: Developmental trajectories for speech breathing

Participants: 25 children with CP, 25 matched controls
Design: Longitudinal from birth to age 7 years
Method: Chest wall kinematics
Results:

- Figure 1. Developmental trajectory functions for lung volume initiation (LVI), lung volume termination (LVT), lung volume excursion (LVE), percent rib cage contribution to lung volume excursion (PRC), inspiratory duration (IND), expiratory duration (EXD), average flow, lung volume excursion per syllable, syllables per breath group.

Conclusions:

- When positioned optimally, infants and children with CP exhibit similar developmental trajectories for lung volume initiation, termination and excursion when vocalizing and speaking as their control counterparts.
- Developmental trajectories for rib cage contribution, expiratory duration, average flow per breath group, lung volume expenditure per syllable and number of syllables produced per breath group differed between groups indicating that children with CP use a different chest wall configuration and laryngeal control for speaking.

Study B: Laryngeal function for speech produced at different loudness levels

Participants: 5 children with CP, 5 matched controls
Ages: 8 to 12 years
Method: Electroglottograph (laryngeal impedance)
Tasks: Conversational, 2X’s, 4X’s, 5X’s conversational loudness for the phrase, “I sell a sapapple again”
Measure: Speech quotient

Results:

- Figure 2. Acoustic signal and resulting EGG signal in typical child speaker, during production of the “ah” vowel (A). Signal is not rectified. Simulated signal and speech quotient measurement (X1,X2) (B).

Conclusions:

- Speakers with CP have slower speaking rates than their matched peers and corresponds with reduction in speaking rate.
- Children with CP did not appear to make a vocal fold adjustment (i.e., similar speed quotient across loudness tasks) when producing speech at louder or softer levels.

Study C: Articulatory kinematic correlates of speaking rate in three different speaking tasks

Participants: 4 speakers with CP, 38 age-matched controls
Method: Optical motion capture (Motion Analysis, Ltd.)
Tasks: Diadochokinetic task (“buh”), syllable (“uhba”), sentence (“Buy Bobby a puppy”)

Measure: Speaking rate (syll/s), speed (mm/s), range of movement (mm), duration (s)

Results:

- Figure 4. Marker set used to record lip and jaw movements

Conclusions:

- Speakers with CP have slower speaking rates than their typically-developing peers but similar maximum speeds of their age-matched peers.
- Range of movement of speakers with CP generally increased with linguistic task demands, similar to typically-developing peers and corresponds with reduction in speaking rate.
- This may be due to the higher ranges of movement that speakers with CP have, potentially reflecting inefficient force control

Acknowledgements

This study was funded by NIH-NIDCD (R03-DC012135) and the San Diego State University Grants Program. A special thank you to all the participants and their families for their participation in the current study.